AP EAPCET 2025 May 23 Shift 1 Question Paper

Time Allowed :3 Hours | **Maximum Marks :**160 | **Total questions :**160

General Instructions

Read the following instructions very carefully and strictly follow them:

1. Duration of Exam: 3 Hours

2. Total Number of Questions: 160 Questions

3. Section-wise Distribution of Questions:

• Physics - 40 Questions

• Chemistry - 40 Questions

• Mathematics - 80 Questions

4. Type of Questions: Multiple Choice Questions (Objective)

5. Marking Scheme: One mark awarded for each correct response

6. Negative Marking: There is no provision for negative marking.

1. If $f(x) = 2x^3 - 3x^2 + 4$, then the minimum value of f(x) in the interval [0, 3] is:

2. If z is a complex number such that |z|=5 and ${\bf Re}(z)=3$, then the value of z^2 is:

- (A) 9 + 40i
- **(B)** 9 40i
- (C) 25
- (D) -7 + 24i

3. Let a circle pass through the point (1,2) and touch the x-axis at (3,0). Then the equation of the circle is:

(A)
$$(x-3)^2 + (y-4)^2 = 16$$

(B)
$$(x-3)^2 + y^2 = 16$$

(C)
$$(x-3)^2 + (y-2)^2 = 4$$

(D)
$$(x-3)^2 + (y-1)^2 = 1$$

4. If $\tan A + \tan B + \tan C = \tan A \tan B \tan C$ and $A + B + C = \pi$, then which of the following is true?

- (A) One of the angles is $\frac{\pi}{2}$
- (B) All angles are equal
- (C) $\tan A = \tan B = \tan C$
- (D) $A = B = \frac{\pi}{4}$

5. If $\vec{a}=2\hat{i}-\hat{j}+3\hat{k}$, $\vec{b}=\hat{i}+2\hat{j}-\hat{k}$, then the angle θ between \vec{a} and \vec{b} is:

6. Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, then $A^2 - 5A + 6I = ?$

(A)
$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$
(B)
$$\begin{bmatrix} 8 & 0 \\ 0 & 8 \end{bmatrix}$$

$$(B) \begin{bmatrix} 8 & 0 \\ 0 & 8 \end{bmatrix}$$

- $(D) \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$
- 7. Two numbers are selected at random (without replacement) from the first 50 natural numbers. The probability that their sum is even is:
- (A) $\frac{24}{50}$
- (B) $\frac{24}{29}$
- (C) $\frac{26}{49}$
- (D) $\frac{1}{2}$
- **8.** Let $f(x) = 2x^3 3x \neq 4$. Then the inverse function $f^{-1}(x)$ is:
- 9. A solid sphere of mass M and radius R is rolling without slipping with speed v. Its total kinetic energy is:
- (A) $\frac{1}{2}Mv^2$
- (B) $\frac{7}{10} M v^2$
- (C) $\frac{3}{10}Mv^2$
- (D) $\frac{9}{10}Mv^2$
- 10. A Carnot engine operates between $500\,\mathrm{K}$ and $300\,\mathrm{K}$. If it absorbs $1000\,\mathrm{J}$ of heat from the source, the amount of work done by the engine is:
- (A) 400 J
- **(B)** 600 J
- (C) 200 J
- (D) 500 J
- 11. A charged particle of mass m and charge q moves with a velocity \vec{v} perpendicular to

(A) $\frac{qB}{mv}$
(B) $\frac{qv}{mB}$
(C) $\frac{mv}{qB}$
(D) $\frac{mB}{qv}$
12. A pipe closed at one end and open at the other resonates at a fundamental
frequency of 340 Hz. If the speed of sound in air is 340 m/s, the length of the pipe is:
(A) 0.25 m
(B) 0.50 m
(C) 1.00 m
(D) 2.00 m
13. In a potentiometer experiment, a cell of emf 1.5 V gives a balance point at 75 cm. If
the cell is replaced by another cell and the balance point is at 60 cm, the emf of the
second cell is:
(A) 1.2 V
(B) 1.0 V
(C) 1.8 V
(D) 2.0 V
14. For a first-order reaction, the rate constant k is $1.386 \times 10^{-3} \mathrm{s}^{-1}$. What is the
half-life $t_{1/2}$ of the reaction? (Use $\ln 2 = 0.693$)
(A) 300 s
(B) 500 s
(C) 200 s
(D) 1000 s
15. Calculate the molality of a solution prepared by dissolving 10 g of NaCl
(M = 58.5 g/mol) in 500 g of water:

a magnetic field \vec{B} . The radius of the circular path it follows is:

- (A) 0.171 mol/kg
- (B) 0.342 mol/kg
- (C) 0.017 mol/kg
- (D) 0.34 mol/kg

16. In a redox titration, 25 mL of $0.1~M~KMnO_4$ is required to completely react with oxalic acid in acidic medium. The volume of 0.2~M oxalic acid used is:

(Balanced reaction: $2\text{MnO}_4^- + 5\text{C}_2\text{O}_4^{2-} + 16\text{H}^+ \rightarrow 2\text{Mn}^{2+} + 10\text{CO}_2 + 8\text{H}_2\text{O}$)

- (A) 25 mL
- (B) 31.25 mL
- (C) 12.5 mL
- (D) 62.5 mL

17. Calculate the volume occupied by 4.4 g of CO₂ gas at 27°C and 1 atm pressure.

 $(R = 0.0821 \, \text{L-atm/mol-K}, \, \text{Molar mass of CO}_2 = 44 \, \text{g/mol})$

- (A) 2.46 L
- (B) 1.68 L
- (C) 4.48 L
- (D) 5.6 L

18. For the reaction $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ at 298 K, the enthalpy change

 $\Delta H = -92.4\,\mathrm{kJ/mol.}$ What happens to the equilibrium when temperature is increased?

- (A) Shifts to the right
- (B) Shifts to the left
- (C) Remains unchanged
- (D) Pressure increases