PAPER III

12 - CHEMICAL ENGINEERING

(Answer ALL questions)

		(Allswei Al	LL quest.	10118)	
41.	Toot:	h paste is an example of —————.	46.		ch of the following statements are RECT?
	a.	Newtonian		(P)	For a rheopectic fluid, the apparent
	b.	Power law			viscosity increases with time under a
	c.	Bingham plastic			constant applied shear stress
	d.	Pseudo plastic		(Q)	For a pseudoplastic fluid, the apparent viscosity decreases with time under a constant applied shear stress
42.	anal	tion factor in flow through conduit is ogous to in flow around nerged objects.		(R)	For a Bingham plastic, the apparent viscosity increases exponentially with the deformation rate
	a.	Shape factor		(S)	For a dilatant fluid, the apparent
	b.	Roughness factor			viscosity increases with increasing
	c.	Drag coefficient			deformation rate
	d.	Shear stress		a.	P and Q only
				b.	Q and R only
				c.	R and S only
43.	Same force will prevail in model and Prototype under			d.	P and S only
	a.	Conditional similarity			
	b.	Dynamic similarity	47.	Whic	ch of the following minerals is not
	c.	Geometric similarity		subje	ected to magnetic separation method?
	d.	Kinematic similarity		a.	Rutile
				b.	Galena
	Top offi	ned manometer is used for		c.	Chromite
44.				d.	Siderite
	a. b.	determining high pressure determining low pressure			
	c.	determining low pressure determining small differences in pressure	48.	-	valent diameter of a particle is the
	d.	highly viscous liquids			eter of the sphere having the same
				a.	Ratio of surface to volume as the actual volume
45.	A suspension of uniform particles in water at a concentration of 500 kg of solids per cubic meter of slurry is settling in a tank. Density of the particles is 2500 kg/m3 and terminal velocity of a single particle is 20 cm/s. What will be the settling velocity of suspension?			b.	Ratio of volume to surface as the particle
				c.	Volume as the particle
				d.	Surface as the particle
	Richardson and Zaki index is 4.6.		49.	The ι	unit of filter medium resistance is
	a.	20 cm/s		a.	$ m kg~m^{-1}$
	b.	4.3 cm/s		b.	m^{-1}
	c.	7.16 cm/s		c.	$m \ kg^{-1}$
	d.	3.58 cm/s		٦	Izor-1

d.

 $m kg^{-1}$

50. A generalized relation for crushing is $(P) \qquad d\overline{D}$

$$d\left(\frac{P}{m}\right) = -K\frac{d\overline{D}_s}{D_s^n}$$
 the solution for thi

equation leads to the Rittengers law for 'n' equal to

- a. 1
- b. 2
- c. 3
- d. 4
- 51. The Value of Gibbs free energy change at equilibrium condition is
 - a. Greater than one
 - b. Less than one
 - c. Equal to one
 - d. Equal to zero
- 52. Match the technologies in Group 1 with the entries in Group 2:

Group – 1	Group 2		
(P) Urea manufacture	(I) Microencapsulation		
(Q) Coal gasification	(II) Ultra-low sulphur diesel		
(R) Controlled release of chemicals	(III) Shale oil		
(S) Deep hydro- desulphurization	(IV) Prilling tower		
	(V) Gas hydrates		
	(VI) Gas – solid non- catalytic reaction		

- a. P-I, Q-V, R -II, S-VI
- b. P-IV, Q-VI, R-I, S-II
- c. P-IV, Q-I, R-III, S-II
- d. P-V, Q-VI, R-IV, S-II

- 53. An arbitrary scale used in sugar industry is
 - a. °API
 - b. ° Baume
 - c. ° Brix
 - d. ° Twaddle
- 54. A typical example of an exothermic reversible reaction conducted at high pressures in industry is
 - a. dehydration of ethanol,
 - b. methanol synthesis,
 - c. reformation of ethane,
 - d. polymerisation of ethylene,
- 55. Aniline point test of an oil qualitatively indicates
 - a. Naphthalene content
 - b. Paraffin content
 - c. Aromatic content
 - d. Olefin Content
- 56. What is the Temperature at which °C is equal to °F?
 - a. 0
 - b. 32
 - c. -40
 - d. -32
- 57. CaCO₃ Contains _____ of Calcium.
 - a. 12%
 - b. 35%
 - c. 60%
 - d. 40%

58. What mass of 75% pure CaCO₃ will be required to neutralize 50 ml of 0.5M HCL solution according to following reaction?

 $CaCO_3 + 2HCl \rightarrow CaCl_2 + CO_2 + H_2O$

- a. 1.67 g
- b. 3.35 g
- c. 4.23 g
- d. 5.05 g
- 59. What is the heat capacity of Na₂SO₄.10H₂O at room temperature using Kopp's rule? (The atomic heat capacities of elements (J/g-atomK) are 26.04 for Na, 22.6 for S, 16.8 for O and 9.6 for H)
 - a. 325.4
 - b. 501.9
 - c. 65.44
 - d. 177.90
- 60. In the process of producing caustic (NaOH), 4000 kg/h of a solution containing 10 wt% NaOH is evaporated in the first evaporator, giving a 20% NaOH solution. This is then fed into a second evaporator which gives a product of 50% NaOH. The amount of water removed from each evaporator is
 - a. 2000 kg, 1200 kg
 - b. 1000 kg, 1200 kg
 - c. 2000 kg, 1000 kg
 - d. 1200 kg, 600 kg
- 61. The change in the Gibbs free energy for the vapourisation of a pure substance is
 - a. Positive
 - b. Negative
 - c. Zero
 - d. May be positive or negative
- 62. Assuming that CO_2 obeys the perfect gas law, the density of CO_2 in kg/m³ at 536 K and 202.6 kPa is
 - a. 1
 - b. 2
 - c. 3
 - d. 4

- 63. A three stage compressor is used to compress a gas at 1 bar to a final pressure of 125 bar. For minimum work, the pressure ratios in each stage should be
 - a. 25
 - b. 5
 - c. 41.67
 - d. 26.24
- 64. The ordinary vapour compression cycle for refrigeration is less efficient than the Carnot cycle, because in the former,
 - a. Evaporation process is non-isothermal
 - b. A two-phase mixture is to be compressed
 - c. Vapour leaving the compressor is superheated
 - d. Expansion process results in liquefaction
- 65. A cyclic engine exchanges heat with two reservoirs maintained at 100° C and 300° C, respectively. The maximum work (in J) that can be obtained from 1000 J of heat extracted from the hot reservoir is
 - a. 349
 - b. 651
 - c. 667
 - d. 1000
- 66. An irreversible, homogeneous reaction A→products, has the rate expression:

Rate = $2C_A^2 + 0.1C_A$, where C is the

 $1 + 50 C_A$

concentration of A.

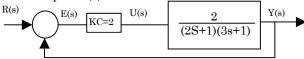
CA varies in the range 0.5 - 50 mol/m³.

For very high concentration of A, the reaction order tends to :

- a. 0
- b. 1
- c. 1.5
- d. 2

- 67. A gaseous reaction A→ 2B + C takes place isothermally in a constant pressure reactor. Starting with a gaseous mixture containing 50% A (rest inerts), the ratio of final to initial volume is found to be 1.6. The percentage conversion of A is
 - a. 30
 - b. 50
 - c. 60
 - d. 74
- 68. A reaction $A \rightarrow B$ is to be conducted in two CSTR in series. The steady state conversion desired is Xf The reaction rate as a function of conversion is given by r = -1/(1+X). If the feed contains no B, then the conversion in the first reactor that minimizes the total volume of the two reactors is
 - a. $1-X_f$
 - b. 0.2 X_f
 - c. 0.5 X_f
 - d. $0.5 (1-X_f)$
- 69. Catalyst pellets have a density of 2.0 g/cc. If the specific surface area is 75 m²/g and the average pore diameter is 8×10^{-7} cm. What is the porosity of the catalyst?
 - a. 0.4
 - b. 0.5
 - c. 0.3
 - d. 0.7
- 70. What is the Knudsen diffusion coefficient for cumene at 510° C through the pores of a catalyst of porosity 0.51 and density $1.14~\rm gm/cm^3$. The specific surface area is $342~\rm m^2/gm$
 - a. $2.46 \text{ cm}^2/\text{sec}$
 - b. $6.46 \times 10^{-3} \text{ cm}^2/\text{sec}$
 - c. $8.46 \times 10^{-3} \text{ cm}^2/\text{sec}$
 - d. $1.05 \times 10^{-4} \text{ cm}^2/\text{sec}$

- 71. For true counter current flow in a shell and tube heat exchanger, the value of correction factor FT is
 - a. 1
 - b. 0.75
 - c. 0.95
 - d. 0.75 0.95
- 72. In a completely opaque medium, if 50% of the incident monochromatic radiation is absorbed, then which of the following statements are **CORRECT**?
 - (P) 50% of the incident radiation is reflected
 - (Q) 25% of the incident radiation is reflected
 - (R) 25% of the incident radiation is transmitted
 - (S) No incident radiation is transmitted
 - a. P and S only
 - b. Q and R only
 - c. P and Q only
 - d. R and S only
- 73. In a furnace the wall thickness is 60 cm and is 100 cm wide by 150 cm height made of material with thermal conductivity 0.4 w/mk. The temperature inside and outside are 1000° and 4° C respectively.


The thermal resistance is

- a. 1 K/W
- b. 2 K/W
- c. 18 K/W
- d. 15 K/W
- 74. Sun's surface at 5800 K emits radiation at a wavelength of $0.5\,\mu$. A furnace at 300° C will emit through a small opening, radiation at a wavelength of nearly
 - a. $10 \,\mu$
 - b. 5μ
 - c. $0.25 \,\mu$
 - d. $0.025 \,\mu$

- 75. A chemical having specific heat of 3.3 kJ/kg K flowing at the rate of 20000 kg/h enters a parallel flow heat exchanger at 120°C. The flow rate of cooling water is 50000 kg/h with an inlet temperature of 20°C. The overall heat transfer coefficient is 1050 W/m²K. The heat transfer area is 10 m² Take for water, specific heat = 4.186 kJ/kgK. Effectiveness of the heat exchanger will be
 - a. 0.2
 - b. 0.3
 - c. 0.4
 - d. 0.6
- 76. Which of the following happens in the use of Raschig rings in place of crushed stones as packing in packed beds (other things being same)?
 - a. increases pressure drop, increases surface area
 - b. increases pressure drop, decreases surface area
 - c. decreases pressure drop, increases surface area
 - d. decreases pressure drop, decreases surface area
- 77. Kirkbride equation is used for determining the
 - a. Rmin
 - b. Nmin
 - c. Nopt
 - d. Feed tray location
- 78. In a triple effect backward feed evaporator, the pressure of vapor space in each of the effect is related by (Hint: Use steam entry as the I effect)
 - a. P1=P2=P3
 - b. P1>P2>P3
 - c. P1<P2<P3
 - d. cannot be said

- 79. A mixture of toluene (40%) and benzene (60%) is fed to the Distillation column; recovery of benzene is 20% at the top, what is the ratio of flow rate of benzene from Distillate to the bottoms? (Based on 1000 Kg of feed)?
 - a. 0.6
 - b. 0.2
 - c. 0.25
 - d. 0.4
- 80. A spherical naphthalene ball of 2mm diameter is subliming very slowly in stagnant air at 25°C. The change in the size of the ball during the sublimation can be neglected. The diffusivity of naphthalene in air at 25°C is 1.1×10^{-6} m²/s. The value of mass transfer coefficient is B × 10^{-3} m/s, where B (up to one decimal place) is
 - a. 1.1
 - b. 1.2
 - c. 1.3
 - d. 1.4
- 81. The inverse Laplace transform of $\frac{1}{2s^2 + 3s + 1}$ is
 - a. $e^{-t/2} e^{-t}$
 - b. $2e^{-t/2} e^{-t/2}$
 - c. $e^{-t} 2e^{-t/2}$
 - d. $e^{-t} e^{-t/2}$
- 82. The characteristic equation of a closed loop system using a proportional controller with gain K_C is $12s^3+19\ s^2+8s+1+K_C=0$. At the onset of instability, the value of K_C is
 - a. 35/3
 - b. 10
 - c. 25/3
 - d. 20/3

83. The block diagram for a control system is shown below: for a unit step change in the set point, R(s), the steady state offset in the output Y(s) is

- a. 0.2
- b. 0.3
- c. 0.4
- d. 0.5
- 84. Given the characteristic equation below, what is the number of roots which will be located to the right of the imaginary axis

$$s^4 + 5s^3 - s^2 - 17s + 12 = 0$$
?

- a. One
- b. Two
- c. Three
- d. Zero
- 85. Given the process transfer function $G_P = 4/(\tau s + 1)^2$ and the disturbance transfer function $G_d = 2/(\tau s + 1)$, what is the correct transfer function for the Feed Forward Controller for perfect disturbance rejection?
 - a. $-2(\tau s+1)$
 - b. -1
 - c. $-0.5(\tau s+1)$
 - d. $-(\tau s+1)^2$
- 86. Given the process transfer function $G_P = 20/(s-2)$, and controller transfer function $G_C = K_C$, and assuming the transfer function of all other elements in the control loop are unity, what is the range of K_C for which the closed loop response will be stable?
 - a. $K_C < 1/10$
 - b. $K_C < 1/100$
 - c. $1/100 < K_C < 1/10$
 - d. $K_C > 1/10$

- 87. The value of ultimate period of oscillation P_u is 3 minutes, and that of the ultimate controller gain K_{cu} is 2. What is the correct set of tuning parameters (controller gain K_C , the derivative time constant τ_D in minutes, and the integral time constant τ_1 in minutes) for a PID controller using Zielger-Nichols controller settings?
 - a. $K_C = 1.1$; $\tau_1 = 2.1$; $\tau_D = 1.31$
 - b. $K_C = 1.5; \tau_1 = 1.8; \tau_D = 0.51$
 - c. $K_C = 15$; $\tau_1 = 1.8$; $\tau_D = 0.51$
 - d. $K_C = 1.2$; $\tau_1 = 1.5$; $\tau_D = 0.38$
- 88. A system has poles at 0.01 Hz, 1 Hz and 80 Hz, zeros at 5 Hz, 100 Hz, and 200 Hz. The approximate phase of the system responds at 20 Hz is
 - a. $+90^{\circ}$
 - b. -90°
 - c. $+ 180^{\circ}$
 - d. -180°
- 89. The numerical technique used to solve simultaneous equation is
 - a. Newton's method
 - b. Regression method
 - c. Intersection method
 - d. Gauss Elimination method
- 90. The Antioine constant for the component is given by $A=16.678;\ B=3640.2;\ C=219.61.$ The pressure (kPa) for the temperature 373 K is
 - a. 100
 - b. 200
 - c. 37.6
 - d. 50.8
- 91. Which one of the following adsorbents is preferred for adsorbing components from aqueous solutions and moist gases because of its poor affinity with water?
 - a. Activated carbon
 - b. Silica Gel
 - c. Activated alumina
 - d. Molecular sieve zeolites

- 92. Favourable adsorption isotherms are those
 - a. Which are linear and pass through the origin
 - b. Which are concave towards the solidconcentration axis throughout
 - c. Which are concave towards the fluidconcentration axis throughout
 - d. Which possess one or more points of inflection
- 93. Mass transfer zone in fixed bed adsorber is
 - a. The portion of the bed with constant adsorbate concentration
 - b. The portion of the bed saturated with adsorbate
 - c. The portion of the bed in which concentration changes from feed concentration to zero
 - d. The zone that follows the unused bed and saturated bed
- 94. Adsorption of acetone from aqueous solution on activated carbon can be represented by the Langmuir equation $q = \frac{0.190\,C}{1+0.146C}$ where q is the adsorbate loading mol/kg, C = solute concentration in aqueous solution mol/m³. The maximum adsorbate loading in kg acetone/kg carbon is
 - a. 0.0755
 - b. 1.3014
 - c. 0.1658
 - d. 0.0096
- 95. Rancidity of oil can be reduced by
 - a. Decoloration
 - b. Hydrogenation
 - c. Oxidation
 - d. purification

- 96. Which of the following is not a method of source reduction?
 - a. Recycling
 - b. Municipal composting
 - c. Incineration
 - d. Making package that weight less
- 97. The major contributor of carbon monoxide is
 - a. Motor vehicle
 - b. Industrial processes
 - c. Stationary fuel combustion
 - d. Domestic usage
- 98. What is the value of BOD of industrial sewage in kg/day, given population equivalent as 6000 persons?
 - a. 480
 - b. 160
 - c. 270
 - d. 100
- 99. The aerobic decomposition of sulfurous organic matter gives
 - a. Nitrites and water
 - b. Carbon dioxide and water
 - c. Sulfates and water
 - d. Nitrogen and Ammonia
- 100. Which of the following is an example of attached growth reactor?
 - a. Trickling filter
 - b. Up-flow anaerobic sludge reactor
 - c. Lagoon
 - d. Aerobic digestion