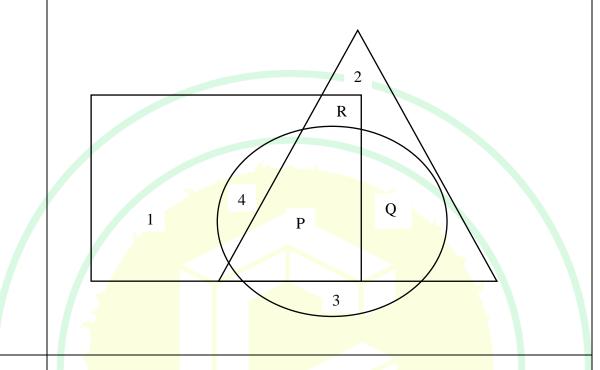


General Aptitude

Q.1 – Q.5 Carry ONE mark Each

Q.1	Courage : Bravery :: Yearning : Select the most appropriate option to complete the analogy.	
(A)	Longing	
(B)	Yelling	
(C)	Yawning	
(D)	Glaring	
Q.2	Wetennis in the lawn when it suddenly started to rain. Select the most appropriate option to complete the above sentence.	
(A)	have been playing	
(B)	had been playing	
(C)	would have been playing	
(D)	could be playing	
	Koorko	



Q.3	A 4×4 digital image has pixel intensities (<i>U</i>) as shown in the figure. The number of pixels with $U \le 4$ is:
	0 1 0 2
	4 7 3 3
	5 5 4 4
	6 7 3 2
(A)	3
(B)	8
(C)	11
(D)	9

GATE 2025 Weeker

Q.4	In the given figure, the numbers associated with the rectangle, triangle, and ellipse
	are 1, 2, and 3, respectively. Which one among the given options is the most
	appropriate combination of P, Q, and R?

(A)
$$P = 6$$
; $Q = 5$; $R = 3$

(B)
$$P = 5; Q = 6; R = 3$$

(C)
$$P = 3; Q = 6; R = 6$$

(D)
$$P = 5; Q = 3; R = 6$$

Roorkee

Q.5	A rectangle has a length L and a width W, where L > W. If the width, W, is increased by 10%, which one of the following statements is correct for all values of L and W?	
(A)	Perimeter increases by 10%.	
(B)	Length of the diagonals increases by 10%.	
(C)	Area increases by 10%.	
(D)	The rectangle becomes a square.	

Q.6 - Q.10 Carry TWO marks Each

Q.6	Column-I has statements made by Shanthala; and, Column-II has responses given
	by Kanishk.

	Column-I		Column-II	
	P.	This house is in a mess.	1.	Alright, I won't bring it up during our conversations.
	Q.	I am not happy with the marks given to me.	2.	Well, you can easily look it up.
	R.	Politics is a subject I avoid talking about.	3.	No problem, let me clear it up for you.
	S.	I don't know what this word means.	4.	Don't worry, I will take it up with your teacher.

Identify the option that has the correct match between Column-II and Column-II.

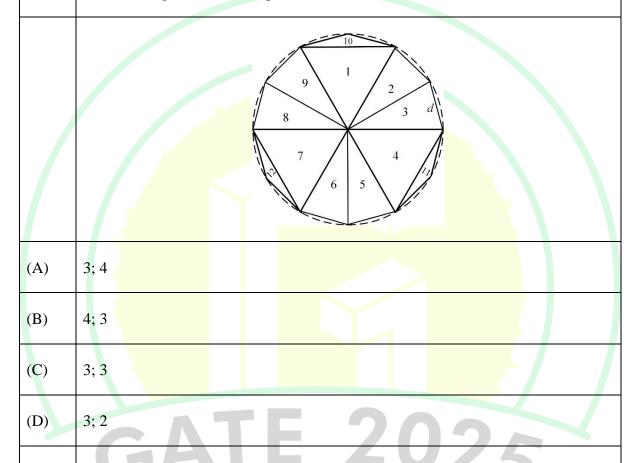
(A)
$$P-2; Q-3; R-1; S-4$$

(B)
$$P-3; Q-4; R-1; S-2$$

(C)
$$P-4; Q-1; R-2; S-3$$

(D)
$$P-1; Q-2; R-4; S-3$$

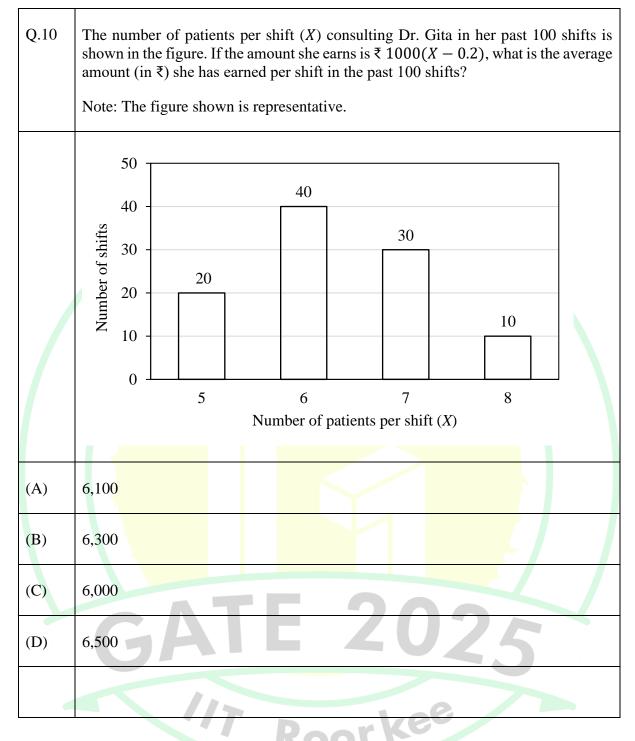
Q.7	Weight of a person can be expressed as a function of their age. The function usually varies from person to person. Suppose this function is identical for two brothers, and it monotonically increases till the age of 50 years and then it monotonically decreases. Let a_1 and a_2 (in years) denote the ages of the brothers and $a_1 < a_2$. Which one of the following statements is correct about their age on the day when they attain the same weight?
(A)	$a_1 < a_2 < 50$
(B)	$a_1 < 50 < a_2$
(C)	$50 < a_1 < a_2$
(D)	Either $a_1 = 50$ or $a_2 = 50$



Q.8 A regular dodecagon (12-sided regular polygon) is inscribed in a circle of radius r cm as shown in the figure. The side of the dodecagon is d cm. All the triangles (numbered 1 to 12) in the figure are used to form squares of side r cm and each numbered triangle is used only once to form a square.

The number of squares that can be formed and the number of triangles required to form each square, respectively, are:


Note: The figure shown is representative.


117 Roorkee

Q.9	If a real variable x satisfies $3^{x^2} = 27 \times 9^x$, then the value of $\frac{2^{x^2}}{(2^x)^2}$ is:
(A)	2^{-1}
(B)	20
(C)	2^3
(D)	215

Q.11 – Q.35 Carry ONE mark Each

Q.11	The phosphazene compound that acts as a superbase is
(A)	
(B)	CI CH ₃ Si-CH ₃ CH ₃ CH ₃ CH ₃
(C)	N—P=N N N N
(D)	Bu ^t N P NH P NH Bu
	17 Roor kee

Page **10** of **46**

Q.12	The reaction for the synthesis of Me ₂ SiCl ₂ through Rochow-Müller process is
(A)	SiCl ₄ + Me ₂ Zn →
(B)	Si:Fe (9:1) + 2 MeCl 300 °C
(C)	Si:Cu (9:1) + 2 MeCl 300 °C
(D)	SiCl ₄ + 2 MeMgBr — 0 °C →
Q.13	Upon cooling from room temperature, the magnetic susceptibility of MnO slowly increases until 118 K, and then it decreases. This phenomenon is known as
(A)	ferromagnetism
(B)	paramagnetism
(C)	antiferromagnetism
(D)	ferrimagnetism
	1/17 - 1/08

Q.14	An aqueous solution of Co(ClO ₄) ₂ .6H ₂ O is light pink in colour. Addition of conc. HCl results in an intense blue coloured solution due to the formation of a new species. The new species among the following is
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	[Given: Atomic number of Co = 27]
(A)	I
(B)	п
(C)	ш
(D)	IV

GATE 2025 Week Roorkee

Q.15	For an unambiguous single step synthesis of the following target molecule (TM), the best bond disconnection in its retrosynthetic analysis is	
	EtO ₂ C CO ₂ Et	
(A)	EtO ₂ C CO ₂ Et	
(B)	EtO ₂ C Z CO ₂ Et	
(C) (D)	EtO ₂ C ₃ , S CO ₂ Et	
	EtO ₂ C ROOT ROOT ROOT ROOT ROOT ROOT ROOT ROO	

Q.16	In the ¹ H-NMR spectrum of the following molecule, the signal of proton H _a appears as
	D D H _a
(A)	singlet
(B)	triplet
(C)	quintet
(D)	quartet

Q.17	A disaccharide X does NOT show mutarotation in aqueous solution. Acidic hydrolysis of X affords two different monosaccharides. The disaccharide X is
(A)	HO HO OH OH HO
(B)	HO OH HO OH HO OH
(C)	HO OH HO OH HO OH
(D)	HO OH HO OH HO
	// Roorkee

Q.18	The symmetry element that does NOT belong to C_{4v} point group is
(A)	C_4
(B)	C_2
(C)	i
(D)	σ_v
Q.19	Rigid rotor wavefunctions are given by $Y_{l,m}(\theta,\phi)$. The wavefunctions $Y_{1,0}(\theta,\phi)$ and $Y_{2,0}(\theta,\phi)$ are given below $Y_{1,0}(\theta,\phi) = \sqrt{\frac{3}{4\pi}}\cos\theta \qquad Y_{2,0}(\theta,\phi) = \sqrt{\frac{5}{16\pi}}(3\cos^2\theta - 1)$ For a non-polar diatomic molecule, the value of transition dipole moment integral for transition between $Y_{1,0}(\theta,\phi)$ and $Y_{2,0}(\theta,\phi)$ is equal to
(A)	$1/\sqrt{2\pi}$
(B)	oGALE 2025
(C)	2
(D)	$1/\sqrt{4\pi}$ Root

Q.20	The translational, vibrational, and rotational molecular partition functions for a system containing ideal diatomic gas molecules in the canonical ensemble (N, V, T) are written as, q_{trans} , q_{vib} , and q_{rot} , respectively. The option that correctly defines their thermodynamic variable(s) dependency is
(A)	$q_{trans}(T,V), q_{vib}(T,V), q_{rot}(T,V)$
(B)	$q_{trans}(T,V), q_{vib}(T), q_{rot}(T)$
(C)	$q_{trans}(T), q_{vib}(T, V), q_{rot}(T)$
(D)	$q_{trans}(T,V), q_{vib}(T), q_{rot}(T,V)$
Q.21	The Vaska's complex $trans$ -IrCl(CO)(PPh ₃) ₂ shows a band at 1967 cm ⁻¹ for the ν_{co} stretching vibration in its infrared spectrum. The complex(es) that will show an increase in the ν_{co} stretching vibration from 1967 cm ⁻¹ is/are
(A)	PhEt ₂ P//////PEt ₂ Ph
(B)	Ph ₃ P _{IIII} OMe OC PPh ₃
(C)	Ph ₃ P _m Pph ₃
(D)	Ph ₃ P _{IIII} NCMe OC PPh ₃

Q.22	Under the conditions mentioned for each reaction, the reaction(s) that would give borazine $(B_3N_3H_6)$ as the major product is/are
(A)	LiBH ₄ + NH ₄ Cl 230 °C ➤
(B)	$B_2H_6 + 2 NH_3 \xrightarrow{180 ^{\circ}C}$
(C)	NaBH ₄ + (NH ₄) ₂ SO ₄ THF, 40 °C ➤
(D)	BCl ₃ + NH ₄ Cl Chlorobenzene
Q.23	The essential symmetry(ies) for a monoclinic crystal system is/are the presence of
(A)	one C ₃ axis
(B)	one C_2 axis
(C)	one C ₄ axis
(D)	one C ₆ axis
	Roorkee

Q.24	Compound(s) that show(s) an intense peak at m/z 120 in the EI mass spectrum is/are
(A)	
(B)	
(C)	ОНОН
(D)	O O CH₃

GATE 2025 Wr Roorkee

Q.25	The correct option(s) of reagents and reaction sequences suitable for carrying out the following transformation is/are
	(major)
(A)	(i) NBS, (PhCOO) ₂ ; (ii) aq. NaOH; (iii) active MnO ₂ ; (iv) Li/liq.NH ₃ , t-BuOH
(B)	(i) m-CPBA; (ii) BF ₃ .Et ₂ O
(C)	(i) SeO ₂ ; (ii) Dess-Martin periodinane; (iii) K[BH(s-Bu) ₃] (K-selectride)
(D)	(i) dil. KMnO ₄ ; (ii) NaIO ₄

GATE 2025 Week Roorkee

Q.26	Among the given options, the possible product(s) that can be obtained from the following reaction is/are
	OMe CHCl ₃ , aq. NaOH
	70 °C
(A)	CI
(B)	НО
(C)	CI H
	OMe
(D)	OMe
	сно
	CATE 2025
	17 Roorkee

Q.27	Choose the correct option(s) with regard to mechanism of the following transformation.
	hv hv
(A)	It proceeds through divinyl cyclopropane rearrangement
(B)	It involves a diradical intermediate
(C)	It proceeds through di-π-methane rearrangement
(D)	It proceeds through [2+2+2] cycloaddition reaction
Q.28	Consider two non-interacting particles confined to a one-dimensional box with infinite potential barriers. Their wavefunctions are ψ_1 and ψ_2 and energies are E_1 and E_2 , respectively. The INCORRECT statement(s) about this system is/are
(A)	The total energy is $E_1 + E_2$
(B)	The total wavefunction is $\psi_1 + \psi_2$
(C)	The total energy is E_1E_2
(D)	The total wavefunction is $\psi_1\psi_2$

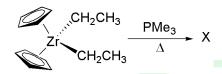
Q.29	The thermodynamic criterion/criteria for a spontaneous process is/are
(A)	$\Delta U > 0$ at constant S and V
(B)	$\Delta S > 0$ at constant U and V
(C)	$\Delta(H - TS) > 0$ at constant T and P
(D)	$\Delta(U - TS) < 0$ at constant T and V
Q.30	Xe and F_2 in 1:1 molar ratio when mixed in a closed flask and kept in the sunlight for a day, gave white crystals of a compound Q. Two equivalents of Q on reaction with one equivalent of AsF_5 gave an ionic compound X^+Y^- with the cation having two Xe atoms. The total number of lone pairs present on the cation X^+ is (in integer).
Q.31	The total number of hyperfine lines expected in the EPR spectrum of *CH ₂ OH (radical) is (in integer). [Note: Consider all hydrogen atoms for calculation]
	77 Roorkee

Q.32	Partial hydrolysis of a pentapeptide yields all possible tripeptides and dipeptides. The dipeptides that are obtained upon hydrolysis are given below.
	Val-Ala, Gln-His, Phe-Val and Ala-Gln
	The total number of tripeptides obtained that contain 'Ala' as one of the amino acids is (in integer).
Q.33	The specific rotation of enantiomerically pure (S) -2-butanol is +14°. The specific rotation of enantiomeric mixture of 2-butanol obtained from an asymmetric reduction of 2-butanone is found to be +7°. The percentage of (R) -2-butanol present in the reaction mixture is (in integer).
Q.34	The ratio of the fundamental vibrational frequencies $(v_{13_{\rm C}16_{\rm O}}/v_{12_{\rm C}16_{\rm O}})$ of two diatomic molecules $^{13}{\rm C}^{16}{\rm O}$ and $^{12}{\rm C}^{16}{\rm O}$, considering their force constants to be the same, is (rounded off to two decimal places).
	ATE 202
	GAIL ZUZS
Q.35	The expressions for the vapour pressure of solid (p_1) and vapour pressure of liquid (p_2) phases of a pure substance, respectively, are
	$\ln p_1 = -\frac{2000}{T} + 5$ and $\ln p_2 = -\frac{4000}{T} + 10$

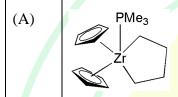
The triple point temperature of this substance is ____ K (in integer).

Q.36 – Q.65 Carry TWO marks Each

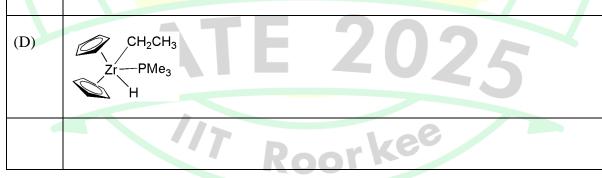
	2.05 Carry T WO marks Each
Q.36	The reaction that proceeds through an oxidative addition followed by a reductive elimination is [Given: Atomic numbers Ni = 28, Ta = 73, Zr = 40, Pt = 78]
(A)	PPh ₃ PPh ₃ PPh ₃ $-2COD$ Ph Ph $2H_2C=CH_2$ Ph $2H_2C=CH_$
(B)	H_3C Ta CH_3 H_3C H_3C Ta H_3C Ta H_3C Ta H_3C
(C)	Zr - A Zr + CMe ₄
(D)	$\begin{array}{c} \\ Et_3P \\ Et_3P \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
	17 Roorkee



Q.37	The homogeneous catalyst whose metal ion does NOT undergo either oxidation or reduction in any of the steps during the hydrogenation of terminal olefins is	
(A)	RhCl(PPh ₃) ₃	
(B)	HRuCl(PPh ₃) ₃	
(C)	$[Ir(COD)(PCy_3)(Py)]^+PF_6^-$ (COD = cyclooctadiene)	
(D)	$[Rh(COD)(PPh_3)_2]^+PF_6^-$ (COD = cyclooctadiene)	



Q.38 The given zirconocene compound, $(\eta^5\text{-Cp})_2\text{ZrEt}_2$, when heated in the presence of an equimolar amount of PMe3 results in the formation of a compound **X** which obeys the 18 electron rule. The reaction also resulted in the release of a saturated hydrocarbon.


[Given: Atomic number of Zr = 40]

The structure of compound X is

Q.39	The ¹ H NMR spectrum of the given iridium complex at room temperature gave a single signal at 2.6 ppm, and its ³¹ P NMR spectrum gave a single signal at 23.0 ppm. When the spectra were recorded at lower temperatures, both these signals split into a complex pattern. The intra-molecular dynamic processes shown by this molecule are	
	Ph Ph Ph Ph	
(A)	Berry pseudo-rotation and rotation of the ethylene units along the C=C axis	
(B)	Berry pseudo-rotation and propeller type rotation of the ethylene units along the Ir-alkene axis	
(C)	Ray-Dutt twist and rotation of the ethylene units along the C=C axis	
(D)	Ray-Dutt twist and propeller type rotation of the ethylene units along the Ir-alkene axis	

Q.40	The effective magnetic moment, μ_{eff} value for $[Cr(H_2O)_6]^{3+}$ taking into account for spin-orbit coupling is closest to $[Given: Atomic number of Cr = 24, spin-orbit coupling constant \lambda = 92 \text{ cm}^{-1}, \text{ and } \Delta_o = 17400 \text{ cm}^{-1}]$
(A)	$3.79 \mu_B$
(B)	$3.87~\mu_B$
(C)	4.05 μ _B
(D)	$3.60~\mu_B$

Q.41	The major products \mathbf{X} and \mathbf{Y} formed in the following reaction sequences are
	(i) \searrow BH ₂ (thexyl borane) \searrow (ii) LDA (1.2 equiv.), TMSCI (iii) CO, H ₂ O (major) (iii) PhSCI (iii) m-CPBA (iv) Δ
(A)	$X = \bigvee_{H \text{ o}} H \text{ o}$
(B)	$X = \bigvee_{\stackrel{\cdot}{H}} \bigvee_{O} \qquad Y = \bigvee_{O} $
(C)	$X = \bigvee_{H \text{ O}} Y = \bigvee_{H \text{ O}} H$
(D)	$X = \bigvee_{H \to 0} H \circ$
	Roorke

Q.42	Compound K displayed a strong band at 1680 cm ⁻¹ in its IR spectrum. Its 1 H-NMR spectral data are as follows: δ (ppm) 7.30 (d, J = 7.2 Hz, 2H), 6.8 (d, J = 7.2 Hz, 2H), 3.8 (septet, J = 7.0 Hz, 1H), 2.2 (s, 3H), 1.9 (d, J = 7.0 Hz, 6H). The correct structure of compound K is	
(A)		
(B)		
(C)	O CH ₃	
(D)	ATE 2025	
	Roorke	

Q.43	The major product formed in the following reaction sequences is
	(i) K ₂ CO ₃ , MeCN (ii) Pd(PPh ₃) ₄ , Et ₃ N, DMF (iii) H ₂ , Pd/C EtOH/AcOH
(A)	OOEt
	N H
(B)	COOEt
(C)	O OEt
(D)	COOEt TE 20
	17 Roorkee

Q.44	In the following asymmetric transformation, the key aldol reaction involves the attack of	
	(i) n-Bu ₂ BOTf, ⁱ Pr ₂ NEt (ii) PhCHO (iii) LiOH/H ₂ O ₂ HO Ph Me	
	(pure enantiomer) (pure enantiomer)	
(A)	Si face of enolate on to the Re face of aldehyde	
(B)	Si face of enolate on to the Si face of aldehyde	
(C)	Re face of enolate on to the Re face of aldehyde	
(D)	Re face of enolate on to the Si face of aldehyde	

Q.45	The correct option with regard to the following statements is		
	(a) Time-independent Schrödinger equation can be exactly solved for Be ²⁺ .		
	 (b) For a particle confined in a one-dimensional box of length <i>l</i> with infinite potential barriers, the trial variation function φ = [(3/l³)^{1/2} x] is not an acceptable trial wavefunction for 0 ≤ x ≤ l. (c) Wavefunctions for system of Fermions must be anti-symmetric with respect to exchange of any two Fermions in the system. (d) Born-Oppenheimer approximation can be used to separate the vibrational 		
	and rotational motion of a molecule.		
(A)	(a) True (b) False (c) False (d) True		
(B)	(a) True (b) True (c) False (d) False		
(C)	(a) False (b) True (c) True (d) False		
(D)	(a) False (b) True (c) True (d) True		

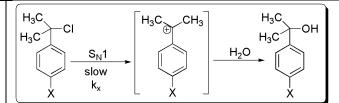
Q.46	The phase diagram of a single component system is given below.	
	The option with the correct number of degrees of freedom corresponding to the labelled points i, j, and k, respectively, is	
(A)	0, 1, 2	
(B)	3, 2, 1	
(C)	2, 0, 1	
(D)	0, 2, 1	

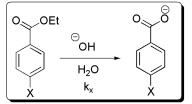
GATE 2025

17 Roorkee

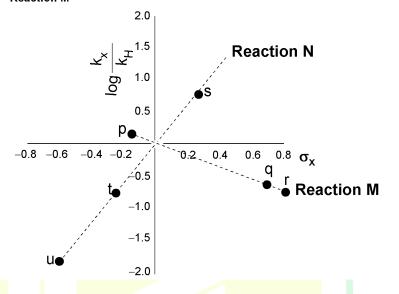
Q.47	An approximate partition function $Q(N, V, T)$ of a gas is given below.		
	$Q(N, V, T) = \frac{1}{N!} \left(\frac{2\pi m k_B T}{h^2} \right)^{3N/2} (V - Nb)^N$		
	The equation of state(s) for this gas is/are		
	[Note: b is a parameter independent of volume.]		
(A)	$P(V - Nb) = Nk_BT$		
(B)	$PV^{(N-b)} = k_B T$		
(C)	$PV = Nk_BT$		
(D)	$P(V-Nb)=Nk_B$		
Q.48	The compound(s) having structure similar to that of B ₂ H ₆ is/are		
(A)	I ₂ Cl ₆		
(B)	Si ₂ Cl ₆		
(C)	Al ₂ Cl ₆ Roorke ⁸		
(D)	Cl_2O_6		

Q.49	The UV-visible spectrum of [Ni(en) ₃] maxima at 11200 cm ⁻¹ , 18350 cm ⁻¹ , a	1^{2+} (en = ethylenediamine) shows absorbance and 29000 cm ⁻¹ .
	Absorbance maximun	Electronic transition
	(a) 11200 cm ⁻¹	(i) ${}^{3}A_{2g} \rightarrow {}^{3}T_{1g}$ (F)
	(b) 18350 cm ⁻¹	$(ii) \qquad {}^{3}A_{2g} \rightarrow {}^{3}T_{2g}$
	(c) 29000 cm ⁻¹	(iii) ${}^3A_{2g} \rightarrow {}^3T_{1g} (P)$
	[Given: Atomic number of Ni = 28]	
	The correct match(es) between absorbis/are	pance maximum and electronic transition
(A)	(a) → (ii)	
(B)	(b) → (i)	
(C)	$(a) \rightarrow (iii)$	
(D)	$(c) \rightarrow (iii)$	


GATE 2025 Wr Roorkee



Q.50	Cytochrome P450 (CYP) enzymes catalyze stereoselective C–H hydroxylation of hydrocarbons in the presence of O ₂ . The correct statement(s) about the structure and activity of CYP is/are	
(A)	A thiolate group is coordinated to the Fe center at one of the axial positions around Fe.	
(B)	While one of the oxygen atoms of O ₂ is inserted into a C–H bond of a hydrocarbon, the other oxygen atom gets reduced to water.	
(C)	An imidazole group is coordinated to the Fe center at one of the axial positions around Fe.	
(D)	An iron-oxo species acts as a key oxidant in the catalytic cycle of CYP.	
Q.51	The complex(es) having metal-metal bond order ≥3.5 is/are [Given: The atomic numbers of Mo, Cr, Mn, and Re are 42, 24, 25, and 75, respectively.]	
(A)	$[Mo_2(\mu-SO_4)_4(H_2O)_2]^{3-}$	
(B)	[Mn ₂ (CO) ₁₀]	
(C)	$[\operatorname{Cr}_2(\mu\text{-O}_2\operatorname{CCH}_3)_4]$	
(D)	$[Mo_2(\mu-HPO_4)_4(H_2O)_2]^{2-}$	


Q.52 Consider the following two reactions and their corresponding Hammett plots

Reaction M

Reaction N

Choose the option(s) that correctly match(es) the points on the graph given in Column-I with substituents X given in Column-II in accordance with their substituents constant σ

Column-I (points on the graph)	Colum <mark>n-II (substit</mark> uent X)
p	NH_2
9	NO_2
r	OMe
s	Cl
t	Me
u	CN

(A)
$$s \rightarrow \sigma_{(X = Cl)}; t \rightarrow \sigma_{(X = OMe)}; u \rightarrow \sigma_{(X = NH_2)}; r \rightarrow \sigma_{(X = NO_2)}$$

(B)
$$s \to \sigma_{(X = Me)}; u \to \sigma_{(X = NH_2)}; t \to \sigma_{(X = OMe)}; r \to \sigma_{(X = Br)}$$

(C)
$$p \to \sigma_{(X = Me)}; q \to \sigma_{(X = CN)}; r \to \sigma_{(X = NO_2)}; t \to \sigma_{(X = OMe)}$$

(D)
$$p \rightarrow \sigma_{(X = Cl)}; \ q \rightarrow \sigma_{(X = NO_2)}; \ r \rightarrow \sigma_{(X = CN)}; \ t \rightarrow \sigma_{(X = Me)}$$

Q.53	The correct option(s) of reagents and reaction sequences suitable for carrying out the following transformation is/are
(A)	(i) Li—C≡C−H, THF, −70 °C; (ii) cat. HgSO ₄ , H ₂ SO ₄ , H ₂ O; (iii) aqueous acid, Δ
(B)	(i) O O , NaH; (ii) aqueous acid, Δ H ₃ C H
(C)	(i) LDA, TfNPh ₂ ; (ii) cat. [(dppe)Pd(0)], \bigcirc OBu; (iii) aqueous acid, \triangle (dppe = diphenylphosphinoethane)
(D)	(i) H ₃ C-NO ₂ , NaOCH ₃ ; (ii) sat. NaCl; (iii) TiCl ₃ , H ₂ O; (iv) aqueous acid, Δ

Q.54	The process(es) and/or intermediate(s) through which the following transformation proceeds is/are
	Me CH ₂ H ⁺ , H ₂ O Me Me Me Me Me Me
(A)	1,2-methide shift
(B)	1,3-methide shift
(C)	non-classical carbocation
(D)	tertiary carbocation

Q.55	For the following reaction, the possible product(s) is/are
	(i) MeMgBr, THF, then H ₃ O ⁺ (ii) PCC (iii) H ₂ , Pd/C
(A)	Me O Et — H
(B)	Me O H H
(C)	Et H Me O
(D)	H Et O Me H
	Roorkee

Page **42** of **46**

Q.56	Wavefunctions and energies for a particle confined in a cubic box are ψ_{n_x,n_y,n_z}
	and E_{n_x,n_y,n_z} , respectively. The functions ϕ_1, ϕ_2, ϕ_3 , and ϕ_4 are written as linear
	combinations of ψ_{n_x,n_y,n_z} . Among these functions, the eigenfunction(s) of the
	Hamiltonian operator for this particle is/are

$$\phi_1 = \frac{1}{\sqrt{2}}\psi_{1,4,1} - \frac{1}{\sqrt{2}}\psi_{2,2,3}$$

$$\phi_2 = \frac{1}{\sqrt{2}}\psi_{1,5,1} + \frac{1}{\sqrt{2}}\psi_{3,3,3}$$

$$\phi_3 = \frac{1}{\sqrt{2}} \psi_{1,3,8} + \frac{1}{\sqrt{2}} \psi_{3,8,1}$$

$$\phi_4 = \frac{1}{2}\psi_{3,3,1} + \frac{\sqrt{3}}{2}\psi_{2,4,1}$$

- (A) ϕ_2
- (B) ϕ_4
- (C) ϕ_3
- (D) ϕ_1

117 Roorkee

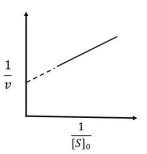
Q.57	If a particle's state function is an eigenfunction of the operator \hat{L}^2 with eigenvalue $30\hbar^2$, then the possible eigenvalue(s) of the operator \hat{L}_z^2 for the same state function is/are
(A)	$10\hbar^2$
(B)	$16\hbar^2$
(C)	25ħ²
(D)	0
Q.58	An archaeological specimen containing ¹⁴ C gives 45 counts per gram of carbon in 5 minutes. A specimen of freshly cut wood gives 20 counts per gram of carbon per minute. The counter used recorded a background count of 5 counts per minute in the absence of any ¹⁴ C containing sample. The age of the specimen is years (in integer). [Note: t _{1/2} of ¹⁴ C = 5730 years]
1	GATE 2025
17 Roorkee	

_	In the following reaction, 13.4 grams of aldehyde P gave a diastereomeric mixture
	of alcohols Q and R in a ratio of 2:1. If the yield of the reaction is 80%, then the
	amount of \mathbf{Q} (in grams) obtained is (in integer).

Q.60 The kinetic energies of an electron (e) and a proton (p) are E and 3E, respectively. Given that mass of a proton is 1836 times that of an electron, the ratio of their de Broglie wavelengths (λ_e/λ_p) is _____ (rounded off to two decimal places).

Q.61 If a molecule emitting a radiation of frequency 3.100×10^9 Hz approaches an observer with a relative speed of 5.000×10^6 m s⁻¹, then the observer detects a frequency of ____ × 10^9 Hz. (rounded off to three decimal places)

[Given: Speed of light $c = 3.000 \times 10^8 \text{ m s}^{-1}$]


Roor

Q.62 The mean energy of a molecule having two available energy states at $\varepsilon = 0$ J and $\varepsilon = 4.14 \times 10^{-21}$ J at 300 K is _____× 10^{-21} J (rounded off to two decimal places).

[Given: Boltzmann constant $(k_B) = 1.38 \times 10^{-23} \text{ J K}^{-1}$]

Q.63	For the cell reaction,
	$Hg_2Cl_2(s) + H_2(1 \text{ atm}) \rightarrow 2Hg(1) + 2H^+(a=1) + 2Cl^-(a=1)$
	The standard cell potential is $\mathcal{E}^0 = 0.2676 \text{ V}$, and $\left(\frac{\partial \mathcal{E}^0}{\partial T}\right)_p = -3.19 \times 10^{-4} \text{ V K}^{-1}$. The standard enthalpy change of the reaction $(\Delta_r H^0)$ at 298 K is $-\mathbf{x}$ kJ mol ⁻¹ . The value of \mathbf{x} is (rounded off to two decimal places).
	[Given: Faraday constant $F = 96500 \text{ C mol}^{-1}$]
Q.64	Consider a Carnot engine with a hot source kept at 500 K. From the hot source, 100 J of energy (heat) is withdrawn at 500 K. The cold sink is kept at 300 K. The efficiency of the Carnot engine is (rounded off to one decimal place).
Q.65	The Lineweaver-Burk plot for an enzyme obeying the Michaelis-Menten mechanism is given below.
	E 200

E 2025

The slope of the line is $0.36 \times 10^{\text{-2}}\,\text{s}$, and the y-intercept is $1.20\,\text{mol}^{-1}\,\text{L}$ s. The value of the Michaelis constant (K_M) is ____ × $10^{\text{-3}}\,\text{mol}\,\text{L}^{\text{-1}}\,$ (in integer).

[Note: v is the initial rate, and $[S]_0$ is the substrate concentration]