

Differential Equations JEE Main PYQ - 1

Total Time: 25 Minute

Total Marks: 40

Instructions

Instructions

- 1. Test will auto submit when the Time is up.
- 2. The Test comprises of multiple choice questions (MCQ) with one or more correct answers.
- 3. The clock in the top right corner will display the remaining time available for you to complete the examination.

Navigating & Answering a Question

- 1. The answer will be saved automatically upon clicking on an option amongst the given choices of answer.
- 2. To des<mark>elect your c</mark>hosen answer, click on the clear response button.
- 3. The marking scheme will be displayed for each question on the top right corner of the test window.

Differential Equations

- **1.** A ball is dropped from a platform 19.6 m high. Its position function is (+4, -1) [27-Jan-2024 Shift 1]
 - **a.** $x = -4.9t^2 + 19.6(0 \le t \le 1)$
 - **b.** $x = -4.9t^2 + 19.6(0 \le t \le 2)$
 - **C.** $x = -9.8t^2 + 19.6(0 \le t \le 2)$
 - **d.** $x = -4.9t^2 19.6(0 \le t \le 2)$
- **2.** Let the population of rabbits surviving at a time t be governed by the (+4, -1) differential equation $\frac{dp(t)}{dt} = \frac{1}{2}p(t) 200$. If p(0) = 100, then p(t) is equal to [28-Jun-2022-Shift-1]
- a. $400 300 e^{t/2}$ b. $300 - 200 e^{-t/2}$ c. $600 - 500 e^t/2$ d. $400 - 300 e^t/2$
- **3.** If a curve y = f(x) passes through the point (1, -1) and satisfies the (+4, -1) differential equation, y(1 + xy)dx = x dy, then $f(-\frac{1}{2})$ is equal to : [28-Jun-2022-Shift-2]
 - **a.** $-\frac{2}{5}$ **b.** $-\frac{4}{5}$ **c.** $\frac{2}{5}$
 - **d.** $\frac{4}{5}$

4. If $(2 + \sin x)\frac{dy}{dx} + (y+1)\cos x = 0$ and y(0) = 1, then $y(\frac{\pi}{2})$ is equal to : [28-Jun-2022-Shift-1] a. $-\frac{2}{3}$

b. $-\frac{1}{3}$

- **C.** $\frac{4}{3}$
- **d.** $\frac{1}{3}$
- **5.** If $\frac{dy}{dx} = \frac{xy}{x^2+y^2}$; y(1) = 1; then a value of x satisfying y(x) = e is : [25•Jul•2021•Shift•1] (+4, -1)
 - **a.** $\sqrt{3}e$
 - **b.** $\frac{1}{2}\sqrt{3}e$
 - **c.** $\sqrt{2}e$
 - **d.** $\frac{e}{\sqrt{2}}$
- 6. The solution of the differential equation , $\frac{dy}{dx} = (x y)^2$, when y(1) = 1, is : (+4, -1) [29-Jun-2022-Shift-2]
 - **a.** $\log_e \left| \frac{2-y}{2-x} \right| = 2(y-1)$ **b.** $\log_e \left| \frac{2-x}{2-y} \right| = x - y$ **c.** $-\log_e \left| \frac{1+x-y}{1-x+y} \right| = x + y - 2$ **d.** $-\log_e \left| \frac{1-x+y}{1+x-y} \right| = 2(x-1)$
- 7. The solution of the differential equation $ydx (x + 2y^2)dy = 0$ is x = f(y). If (+4, -1) f(-1) = 1, then f(1) is equal to : [28-Jun-2022-Shift-2]
 - a. 4
 b. 3
 c. 2
 - **d.** 1
- 8. Let $S = \{x \in R: 0 \le x \le 1 \text{ and } 2 \tan^{-1}(1+x)/(1-x) = \{\cos^{-1}(1-x^2)/(1+x^2)\}$. If n(S) denotes (+4, -1) the number of elements in S then : [25•Jul•2021•Shift•1]

- **a.** n(S) = 2 and only one element in S is less than $\frac{1}{2}$.
- **b.** n(S) = 1 and the element in S is less than $\frac{1}{2}$.
- **c.** n(S) = 1 and the elements in S is more than $\frac{1}{2}$.

d. n(S) = 0

- 9. Let $9 = x_1 < x_2 < \ldots < x_7$ be in an A.P. with common difference *d*. If the (+4, -1) standard deviation of $x_1, x_2 \ldots, x_7$ is 4 and the mean is \bar{x} , then $\bar{x} + x_6$ is equal [20•Jul•2021•Shift•2] to :
 - **a.** $18\left(1+\frac{1}{\sqrt{3}}\right)$
 - **b.** $2\left(9+\frac{8}{\sqrt{7}}\right)$
 - **c.** 34
 - d. 25 Colegedunia

(+4, -1)

[25•Jul•2021•Shift•1]

10. If $a_n = \frac{-2}{4n^2 - 16n + 15}$, then $a_1 + a_2 + \ldots + a_{25}$ is equal to:

- **a.** $\frac{52}{147}$
- **b.** $\frac{50}{141}$
- **C.** $\frac{51}{144}$
- **d.** $\frac{49}{138}$

Answers

1. Answer: b

Explanation:

We have, $a = \frac{d^2x}{dt^2} = -9.8$ The initial conditions are x(0) = 19.6 and v(0) = 0So, $v = \frac{dx}{dt} = -9.8t + v(0) = -9.8t$ $\therefore x = -4.9t^2 + x(0) = -4.9t^2 + 19.6$ Now, the domain of the function is restricted since the ball hits the ground after a certain time. To find this time we set x = 0 and solve for t. $0 = 4.9t^2 + 19.6 \Rightarrow t = 2$

Concepts:

1. Differential Equations:

A <u>differential equation</u> is an equation that contains one or more functions with its derivatives. The derivatives of the function define the rate of change of a function at a point. It is mainly used in fields such as physics, engineering, biology and so on.

Orders of a Differential Equation

First Order Differential Equation

The <u>first-order differential equation</u> has a degree equal to 1. All the linear equations in the form of derivatives are in the first order. It has only the first derivative such as dy/dx, where x and y are the two variables and is represented as: dy/dx = f(x, y) = y'

Second-Order Differential Equation

The equation which includes <u>second-order derivative</u> is the second-order differential equation. It is represented as; $d/dx(dy/dx) = d^2y/dx^2 = f''(x) = y''$.

Types of Differential Equations

Differential equations can be divided into several types namely

- Ordinary Differential Equations
- Partial Differential Equations
- Linear Differential Equations
- Nonlinear differential equations
- Homogeneous Differential Equations
- Nonhomogeneous Differential Equations

2. Answer: a

Explanation:

$$\begin{split} \frac{dp(t)}{dt} &= \frac{1}{2}p(t) - 200\\ \int \frac{d(p(t))}{\left(\frac{1}{2}p(t) - 200\right)} &= \int dt\\ 2 \log\left(\frac{p(t)}{2} - 200\right) &= t + c\\ \frac{p(t)}{2} - 200 &= e^{\frac{t}{2}}k\\ \text{Using given condition } p(t) &= 400 - 300 e^{t/2} \end{split}$$

Concepts:

1. Differential Equations:

A <u>differential equation</u> is an equation that contains one or more functions with its derivatives. The derivatives of the function define the rate of change of a function at a point. It is mainly used in fields such as physics, engineering, biology and so on.

Orders of a Differential Equation

First Order Differential Equation

The <u>first-order differential equation</u> has a degree equal to 1. All the linear equations in the form of derivatives are in the first order. It has only the first derivative such as dy/dx, where x and y are the two variables and is represented as: dy/dx = f(x, y) = y'

Second-Order Differential Equation

The equation which includes <u>second-order derivative</u> is the second-order differential equation. It is represented as; $d/dx(dy/dx) = d^2y/dx^2 = f''(x) = y''$.

Types of Differential Equations

Differential equations can be divided into several types namely

- Ordinary Differential Equations
- Partial Differential Equations
- Linear Differential Equations
- Nonlinear differential equations
- Homogeneous Differential Equations
- Nonhomogeneous Differential Equations

3. Answer: d

Explanation:

$$\frac{y}{x}(1+xy) = \frac{dy}{dx}$$

$$y = vx$$

$$\Rightarrow \frac{y}{x} = v$$

$$\frac{dy}{dx} = v + x \frac{dv}{dx}$$

$$v (1+vx^2) = v + x \frac{dv}{dx}$$

$$v^2x^2 = x \frac{dv}{dx}$$

$$v^2x = \frac{dv}{dx}$$

$$\int x dx = \int \frac{1}{v^2} dv$$

$$\frac{x^2}{2} = -\frac{x}{y} + c$$
Put $(1, -1)$

$$\frac{1}{2} = \frac{1}{1} + c$$

$$\Rightarrow c = -\frac{1}{2}$$

$$\frac{x^2}{2} = -\frac{x}{y} - \frac{1}{2}$$
We have to find $f(-\frac{1}{2})$
Put $x = -\frac{1}{2}$

$$\frac{(-\frac{1}{2})^2}{2} = -\frac{(-\frac{1}{2})}{y} - \frac{1}{2}$$

$$\frac{1}{8} = \frac{1}{2y} - \frac{1}{2}$$

$$y = \frac{4}{5}$$

ollegedunia

Concepts:

1. Differential Equations:

A <u>differential equation</u> is an equation that contains one or more functions with its derivatives. The derivatives of the function define the rate of change of a function at a point. It is mainly used in fields such as physics, engineering, biology and so on.

Orders of a Differential Equation

First Order Differential Equation

The <u>first-order differential equation</u> has a degree equal to 1. All the linear equations in the form of derivatives are in the first order. It has only the first derivative such as dy/dx, where x and y are the two variables and is represented as: dy/dx = f(x, y) = y'

Second-Order Differential Equation

The equation which includes <u>second-order derivative</u> is the second-order differential equation. It is represented as; $d/dx(dy/dx) = d^2y/dx^2 = f''(x) = y''$.

Types of Differential Equations

Differential equations can be divided into several types namely

- Ordinary Differential Equations
- Partial Differential Equations
- Linear Differential Equations
- Nonlinear differential equations
- Homogeneous Differential Equations
- Nonhomogeneous Differential Equations

4. Answer: d

Explanation:

$$egin{aligned} &(2+\sin x)\,rac{dy}{dx}+(y+1)\cos x=0\ &y(0)=1,y\left(rac{\pi}{2}
ight)$$
 = ? $rac{1}{y+1}dy+rac{\cos x}{2+\sin x}dx=0\ &In\,|y+1|+In\,(2+\sin x)=InC \end{aligned}$

 $(y+1)(2 + \sin x) = C$ Put x = 0, y = 1 $(1+1) \cdot 2 = C \Rightarrow C = 4$ Now, $(y+1)(2 + \sin x) = 4$ For, $x = \frac{\pi}{2}$ (y+1)(2+1) = 4 $y+1 = \frac{4}{3}$ $y = \frac{4}{3} - 1 = \frac{1}{3}$

Concepts:

1. Differential Equations:

A <u>differential equation</u> is an equation that contains one or more functions with its derivatives. The derivatives of the function define the rate of change of a function at a point. It is mainly used in fields such as physics, engineering, biology and so on.

Orders of a Differential Equation

First Order Differential Equation

The <u>first-order differential equation</u> has a degree equal to 1. All the linear equations in the form of derivatives are in the first order. It has only the first derivative such as dy/dx, where x and y are the two variables and is represented as: dy/dx = f(x, y) = y'

Second-Order Differential Equation

The equation which includes <u>second-order derivative</u> is the second-order differential equation. It is represented as; $d/dx(dy/dx) = d^2y/dx^2 = f''(x) = y''$.

Types of Differential Equations

Differential equations can be divided into several types namely

- Ordinary Differential Equations
- Partial Differential Equations
- Linear Differential Equations
- Nonlinear differential equations
- Homogeneous Differential Equations

• Nonhomogeneous Differential Equations

5. Answer: a

Explanation:

$$\begin{aligned} \frac{dy}{dx} &= \frac{xy}{x^2 + y^2} \\ \text{Let } y &= vx \\ \frac{dy}{dx} &= v + x \cdot \frac{dv}{dx} \\ v + x\frac{dv}{dx} &= \frac{xvx}{x^2 + v^2x^2} = \frac{1}{v^2} \\ x\frac{dv}{dx} &= \frac{v}{x^2 + v^2x^2} = \frac{v}{1 + v^2} \\ x\frac{dv}{dx} &= \frac{v}{1 + v^2} - v = \frac{v - v - v^3}{1 + v^2} \\ &\int \frac{v}{1 + v^2} \cdot dv = \int -\frac{dx}{x} \\ &\Rightarrow \int v^{-3} \cdot dv + \int \frac{1}{v} dv = -\int \frac{dx}{x} \\ &\Rightarrow \int v^{-3} \cdot dv + \int \frac{1}{v} dv = -\int \frac{dx}{x} \\ &\Rightarrow \frac{v^{-2}}{-2} + \ln v = -\ln x + \lambda \\ &\Rightarrow -\frac{1}{2v^2} + \ln v - \ln x = -\ln x + \lambda \\ &\Rightarrow -\frac{1}{2} \frac{x^2}{y^2} + \ln y + \frac{1}{2} = 0 \text{ at } y = e \\ &\Rightarrow -\frac{1}{2} \frac{x^2}{y^2} + 1 + \frac{1}{2} \Rightarrow \frac{x^2}{2e^2} = \frac{3}{2} \Rightarrow x^2 = 3e^2 \end{aligned}$$

Concepts:

1. Differential Equations:

A <u>differential equation</u> is an equation that contains one or more functions with its derivatives. The derivatives of the function define the rate of change of a function at a point. It is mainly used in fields such as physics, engineering, biology and so on.

Orders of a Differential Equation

First Order Differential Equation

The <u>first-order differential equation</u> has a degree equal to 1. All the linear equations in the form of derivatives are in the first order. It has only the first derivative such as dy/dx, where x and y are the two variables and is represented as: dy/dx = f(x, y) = y'

Second-Order Differential Equation

The equation which includes <u>second-order derivative</u> is the second-order differential equation. It is represented as; $d/dx(dy/dx) = d^2y/dx^2 = f''(x) = y''$.

Types of Differential Equations

Differential equations can be divided into several types namely

- Ordinary Differential Equations
- Partial Differential Equations
- Linear Differential Equations
- Nonlinear differential equations
- Homogeneous Differential Equations
- Nonhomogeneous Differential Equations

6. Answer: d

Explanation:

$$\begin{aligned} x - y &= t \Rightarrow \frac{dy}{dx} = 1 - \frac{dt}{dx} \Rightarrow 1 - \frac{dt}{dx} = t^2 \Rightarrow \int \frac{dt}{1 - t^2} = \int 1 dx \Rightarrow \frac{1}{2} \ell n\left(\frac{1 + t}{1 - t}\right) = x + \lambda \Rightarrow \\ \frac{1}{2} \ell n\left(\frac{1 + x - y}{1 - x + y}\right) &= x + \lambda \text{ given } y(1) = 1 \Rightarrow \frac{1}{2} \ell n\left(1\right) = 1 + \lambda \Rightarrow \lambda = -1 \Rightarrow \ell n\left(\frac{1 + x - y}{1 - x + y}\right) = 2\left(x - 1\right) \Rightarrow \\ -\ell n\left(\frac{1 - x + y}{1 + x - y}\right) = 2\left(x - 1\right) \end{aligned}$$

Concepts:

1. Differential Equations:

A <u>differential equation</u> is an equation that contains one or more functions with its derivatives. The derivatives of the function define the rate of change of a function at a point. It is mainly used in fields such as physics, engineering, biology and so on.

Orders of a Differential Equation

First Order Differential Equation

The <u>first-order differential equation</u> has a degree equal to 1. All the linear equations in the form of derivatives are in the first order. It has only the first derivative such as dy/dx, where x and y are the two variables and is represented as: dy/dx = f(x, y) = y'

Second-Order Differential Equation

The equation which includes <u>second-order derivative</u> is the second-order differential equation. It is represented as; $d/dx(dy/dx) = d^2y/dx^2 = f''(x) = y''$.

Types of Differential Equations

Differential equations can be divided into several types namely

- Ordinary Differential Equations
- Partial Differential Equations
- Linear Differential Equations
- Nonlinear differential equations
- Homogeneous Differential Equations
- Nonhomogeneous Differential Equations

7. Answer: b

Explanation: COLEGECU

Given differential equation is $ydx - (x + 2y^2) dy = 0...(1)$ and solution of (1) is x = f(v); where f(-1) = 1, f(1) =? Rearranging (1), we get $y\frac{dx}{dy} - (x + 2y^2) = 0 \Rightarrow \frac{dx}{dy} - 2y - \frac{x}{y} = 0$ or $\frac{dx}{dy} + \left(\frac{-1}{y}\right)x = 2y$, which is a linear differential equation of first order $\frac{dx}{dy} + P x = Q$; Its I.F. $= e^{\int Pdy} = e^{\int \frac{-1}{y}dy} = e^{-\ln y} = \frac{1}{y}$. Solution of (1) is given by $x.(I.F) = \int Q(I.F.)dy + C \Rightarrow x \cdot \frac{1}{y} = \int 2y \cdot \frac{1}{y}dy + C \Rightarrow \frac{x}{y} = 2y + c \Rightarrow x = 2y^2 + cy; f(-1) = 1 x + 1 = 2 + c(-1) \Rightarrow c = 1$. $x = 2y^2 + y = f(y) \Rightarrow f(1) = 2 + 1 = 3$

Concepts:

1. Differential Equations:

A <u>differential equation</u> is an equation that contains one or more functions with its derivatives. The derivatives of the function define the rate of change of a function at a point. It is mainly used in fields such as physics, engineering, biology and so on.

Orders of a Differential Equation

First Order Differential Equation

The <u>first-order differential equation</u> has a degree equal to 1. All the linear equations in the form of derivatives are in the first order. It has only the first derivative such as dy/dx, where x and y are the two variables and is represented as: dy/dx = f(x, y) = y'

Second-Order Differential Equation

The equation which includes <u>second-order derivative</u> is the second-order differential equation. It is represented as; $d/dx(dy/dx) = d^2y/dx^2 = f''(x) = y''$.

Types of Differential Equations

Differential equations can be divided into several types namely

- Ordinary Differential Equations
- Partial Differential Equations
- Linear Differential Equations
- Nonlinear differential equations
- Homogeneous Differential Equations
- Nonhomogeneous Differential Equations

8. Answer: b

Explanation:

$$0 < x < 1$$

$$2 \tan^{-1} \left(\frac{1-x}{1+x}\right) = \cos^{-1} \left(\frac{1-x^2}{1+x^2}\right)$$

$$\tan^{-1} x = \theta \in \left(0, \frac{\pi}{4}\right)$$

$$\therefore x = \tan \theta$$

$$2 \tan^{-1} \left(\tan \left(\frac{\pi}{4} - \theta\right)\right) = \cos^{-1}(\cos 2\theta)$$

$$2 \left(\frac{\pi}{4} - \theta\right) = 2\theta$$

$$\therefore 4\theta = \frac{\pi}{2} \therefore \theta = \frac{\pi}{8}$$

$$x = \tan \frac{\pi}{8}$$

$$\therefore x = \sqrt{2} - 1 \simeq 0.414$$

Concepts:

1. Differential Equations:

A <u>differential equation</u> is an equation that contains one or more functions with its derivatives. The derivatives of the function define the rate of change of a function at a point. It is mainly used in fields such as physics, engineering, biology and so on.

Orders of a Differential Equation

First Order Differential Equation

The <u>first-order differential equation</u> has a degree equal to 1. All the linear equations in the form of derivatives are in the first order. It has only the first derivative such as dy/dx, where x and y are the two variables and is represented as: dy/dx = f(x, y) = y'

Second-Order Differential Equation

The equation which includes <u>second-order derivative</u> is the second-order differential equation. It is represented as; $d/dx(dy/dx) = d^2y/dx^2 = f''(x) = y''$.

Types of Differential Equations

Differential equations can be divided into several types namely

- Ordinary Differential Equations
- Partial Differential Equations
- Linear Differential Equations
- Nonlinear differential equations
- Homogeneous Differential Equations
- Nonhomogeneous Differential Equations

9. Answer: c

Explanation:

The correct answer is (C) : 34 $9 = x_1 < x_2 < \dots < x_7$ $9, 9 + d, 9 + 2d, \dots . 9 + 6d$ $0, d, 2d, \dots . . . 6d$ $x_{new} = \frac{21d}{7} = 3d$ $16 = \frac{1}{7}(0^2 + 1^2 + \dots + 6^2)d^2 - 9d^2$

 $16 = \frac{1}{7} \left(\frac{6 \times 7 \times 13}{6}\right) d^2 - 9 d^2$ $16 = 13 d^2 - 9 d^2$ $16 = 4 d^2$ $d^2 = 4$ d = 2Now, $\bar{x} + x_6 = 6 + 9 + 10 + 9$ $\bar{x} + x_6 = 34$

Concepts:

1. Differential Equations:

A <u>differential equation</u> is an equation that contains one or more functions with its derivatives. The derivatives of the function define the rate of change of a function at a point. It is mainly used in fields such as physics, engineering, biology and so on.

Orders of a Differential Equation

First Order Differential Equation

The <u>first-order differential equation</u> has a degree equal to 1. All the linear equations in the form of derivatives are in the first order. It has only the first derivative such as dy/dx, where x and y are the two variables and is represented as: dy/dx = f(x, y) = y'

Second-Order Differential Equation

The equation which includes <u>second-order derivative</u> is the second-order differential equation. It is represented as; $d/dx(dy/dx) = d^2y/dx^2 = f''(x) = y''$.

Types of Differential Equations

Differential equations can be divided into several types namely

- Ordinary Differential Equations
- Partial Differential Equations
- Linear Differential Equations
- Nonlinear differential equations
- Homogeneous Differential Equations

• Nonhomogeneous Differential Equations

10. Answer: b

Explanation:

If
$$a_n = \frac{-2}{4n^2 - 16n + 15}$$
 then $a_1 + a_2 + \dots a_{25}$

$$\Rightarrow \sum_{n=1}^{25} a_n = \sum \frac{-2}{4n^2 - 16n + 15}$$

$$= \sum \frac{-2}{4n^2 - 6n - 10n + 15}$$

$$= \sum \frac{-2}{2n(2n - 3) - 5(2n - 3)}$$

$$= \sum \frac{-2}{(2n - 3)(2n - 5)}$$

$$= \sum \frac{1}{2n - 3} - \frac{1}{2n - 5}$$

$$= \frac{1}{47} - \frac{1}{(-3)}$$

$$= \frac{50}{141}$$

Concepts:

1. Application of Derivatives:

Various Applications of Derivatives-

Rate of Change of Quantities:

If some other quantity 'y' causes some change in a quantity of surely 'x', in view of the fact that an equation of the form y = f(x) gets consistently pleased, i.e, 'y' is a function of 'x' then the rate of change of 'y' related to 'x' is to be given by

 $rac{ riangle y}{ riangle x} = rac{y_2 - y_1}{x_2 - x_1}$

This is also known to be as the Average Rate of Change.

Increasing and Decreasing Function:

Consider y = f(x) be a differentiable function (whose derivative exists at all points in the domain) in an interval x = (a,b).

• If for any two points x_1 and x_2 in the interval x such a manner that $x_1 < x_2$, there holds an inequality $f(x_1) \le f(x_2)$; then the function f(x) is known as increasing in

this interval.

- Likewise, if for any two points x_1 and x_2 in the interval x such a manner that $x_1 < x_2$, there holds an inequality $f(x_1) \ge f(x_2)$; then the function f(x) is known as decreasing in this interval.
- The functions are commonly known as strictly increasing or decreasing functions, given the inequalities are strict: f(x₁) < f(x₂) for strictly increasing and f(x₁) > f(x₂) for strictly decreasing.

Read More: Application of Derivatives

