BSEH MARKING SCHEME

CLASS-XII

Chemistry (March-2024)

Code: B

☐ The answer points given in the marking scheme are not final. These are suggestive and indicative. If the examinee has given different, but appropriate answers, then he should be given appropriate marks.

Q.	Answers	Marks
No.		
1.	d) Molality	1
2.	c) No reaction	1
3.	c) mol L ⁻¹ s ⁻¹	1
4.	a) La	1
5.	b) cis-platin	1
6.	b) Racemization	1
7.	c) 4-Nitroanisole	1
8.	b) β-D-Glucose	1
9.	b) Vitamin C	1
10.	Ideal solution	1
11.	Rare earth	1
12.	Cobalt	1
13.	51	1
14.	Tert-butyl Alcohols	1
15.	Carbonyl Chloride	1
16.	a) Both A and R are true, and R is the correct explanation of A	1
17.	d) A is false but R is true	1
18.	b) Both A and R are true, and R is not the correct explanation of A	

19.	The properties which depend on the number of solute particles	2
	irrespective of their nature relative to the total number of	
	particles present in the solution are called colligative properties.	
	(1 mark)	
	Examples: (1) relative lowering of vapour pressure of the	
	solvent	
	(2) depression of freezing point of the solvent	
	(3) elevation of boiling point of the solvent	
	(4) osmotic pressure	
	(Any two, ½ mark each)	
20.	a) Fuel cell	2
	(½ mark)	
	b) Lead storage	
	(½ mark)	
	c) Mercury cell	
	(½ mark)	
	d) Dry cell	
	(½ mark)	
	Or	
	Given	
	Production of Al from Al ₂ O ₃ has a reaction as following:	
	$A1^{3+} + 3e^{-} \rightarrow A1$	
	(½ mark)	
	i.e. production of 1 mole of Al (27 g) from Al ₂ O ₃ requires	
	electricity = 3 F	
	or production of 1 g of Al from Al_2O_3 requires electricity = 3/27 F	

	(½ mark)	
	So, production of 40 g of Al from Al ₂ O ₃ requires electricity =	
	40/9 F	
	= 4.44 F	
	(½ mark	
	for answer, ½ mark for unit)	
21.	concentration of reactants & pressure in case of gases,	
	temperature, and catalyst.	2
	(½ mark each)	
22.	In the first transition series, Cu exhibits +1 oxidation state very	
	frequently.	
	(1 mark)	2
	$2K_2Mno_4+2H_2O$	
	$2Cr_3+7H_2O+3T_2$	
	(1 mark)	
23.	tert-butyl bromide < sec-butyl bromide < isobutyl	
	bromide < n-butyl bromide	2
1		1

The difference in the relative acidic strength if we compare the resonance hybrids of carboxylate ion and phenoxide ion		
RCOOH ← ← ← − − − − − − − − − − − − − − − − 		
OH O → + H+		
	(1 mark)	
The electron charge is more dispersed in compression to the phenol ion the release of H ⁺ ion from carboxylic acid is easier than phenol.		2
	(1 mark)	
	· · · · · · · · · · · · · · · · · · ·	
The nucleophile which has two different electron donor atoms and can attack through two different sites are called as ambident nucleophiles.		
(1 mark)		
1	(1 mark)	
i) p-nitroaniline, Aniline, p-tol	uidine	
(1 mark)		
ii) NH ₃ , C ₂ H ₅ NH ₂ , (C ₂ H ₅) ₂ NH, (C ₂ H ₅) ₃ N		2
(1 mark)		
Positive Deviation NonIdeal Solutions	Negative Deviation Nonideal solutions	
1. Those liquid-liquid solutions which has vapour pressure more than expectations from Raoults' law.	1. Those liquid-liquid solutions which has vapour pressure less than expectations from Raoults' law.	3
	resonance hybrids of carboxylat RCOOH OH OH OH The electron charge is more disperience of H ⁺ ion than phenol. (C) The nucleophile which has two and can attack through two different of the nucleophiles. For examples cyanide ion and nucleophiles. i) p-nitroaniline, Aniline, p-tol ii) NH₃, C₂H₅NH₂, (C₂H₅)₂NH, Positive Deviation NonIdeal Solutions 1. Those liquid-liquid solutions which has vapour pressure more than expectations from Raoults'	resonance hybrids of carboxylate ion and phenoxide ion RCOOH RCOO+H* OH OH OF (1 mark) The electron charge is more dispersed in compression to the phenol ion the release of H* ion from carboxylic acid is easier than phenol. (1 mark) Or The nucleophile which has two different electron donor atoms and can attack through two different sites are called as ambident nucleophiles. (1 mark) For examples cyanide ion and nitrite ion represent ambident nucleophiles. (1 mark) i) p-nitroaniline, Aniline, p-toluidine (1 mark) ii) NH ₃ , C ₂ H ₅ NH ₂ , (C ₂ H ₅) ₂ NH, (C ₂ H ₅) ₃ N (1 mark) Positive Deviation NonIdeal Solutions 1. Those liquid-liquid solutions which has vapour pressure more than expectations from Raoults' expectations from Raoults'

	2. The molecular interactions of solution is weaker than that of solute and solvent.2. The molecular interactions of solution is stronger than that of solute and solvent. $3. \Delta V > 0$ $3. \Delta V < 0$ $4. \Delta H > 0$ $4. \Delta H < 0$ 5. They form minimum boiling azeotrops. $5. They form maximum boiling azeotrops.$ (Any three, 1 mark each)	
27	For a first order reaction: $t = \frac{2.303}{k} log \frac{[R]}{[R]}$ $(\frac{1}{2} mark) Using this we get:$ $t = \frac{2.303}{k} log \frac{100}{1}$	3

(½ mark)

$$t = \frac{2.303 \times 2}{k}$$

(½ mark)

Also

$$t = \frac{2.303}{k} log \frac{100}{10}$$

(½ mark)

$$t = \frac{2.303}{k}$$

(½ mark)

$$\frac{t_{99}}{\text{Now}} = \frac{\frac{k}{2.303}}{\frac{2.303}{2.303}}$$

$$\frac{t}{t} = 2$$

(½ mark)

Or

Consider the reaction, $R \square P$ is zero order reaction.

$$Rate = -\frac{d[R]}{dt} = k[R]$$

(½ mark)

$$\Rightarrow Rate = -\frac{d[R]}{dt} = k$$

$$\Rightarrow d[R] = -kdt$$

Integrating both sides
$$[R] = -kt + I$$
Eq. 1

Where I is the constant of integration

(½ mark)

At t = 0, the concentration of the reactant $R = [R]_0$, where $[R]_0$ is initial concentration of the reactant.

(½ mark)

Substituting in above equation 1

$$[R] = -k \times 0 + I$$
$$[R] = I$$

(½ mark)

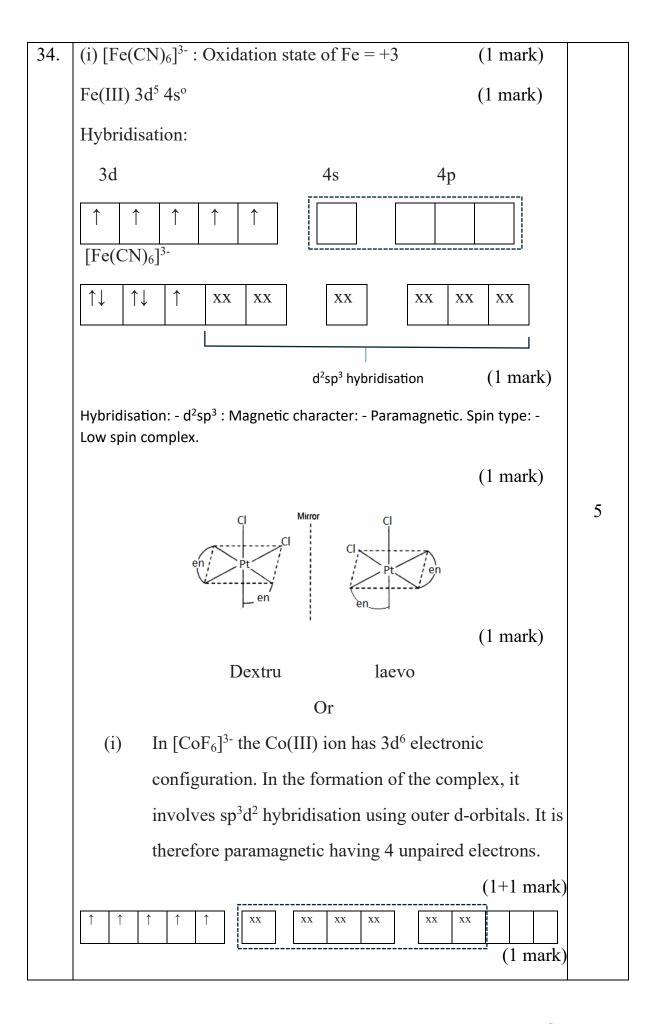
Substituting the value of I in the equation 1 [R] = -kt + [R] (½ mark)

$$\Rightarrow k = \frac{[R] - [R]}{t}$$

This is the integrated rate equation for a zero-order reaction.

(½ mark)

28.	i) ability to adopt multiple oxidation states ii) ability to form	
	complexes. iii) transition metals utilise outer d and s electrons	
	for bonding. This has the effect of increasing the concentration	
	of the reactants at the catalyst surface and also weakening of the	3
	bonds in the reacting molecules.	
	(1 mark each)	
29.	i) Freon-12 is used for aerosol propellants, refrigeration and	
	air conditioning purposes.	
	ii) Carbon tetrachloride is used in the synthesis of	
	chlorofluorocarbons and other chemicals, pharmaceutical	3
	manufacturing, and general solvent use.	
	iii) Iodoform can be used as antiseptic.	
	(1 mark each)	
30.	A: CH ₃ CH ₂ CN	
	B: CH ₃ CH ₂ CH ₂ NH ₂	
	C: CH ₃ CH ₂ CH ₂ OH	
	(½ mark each)	
	A: $C_6H_5NH_2$	
	B: C ₆ H ₅ N ₊₂ C ₁ -	
	C: C ₆ H ₅ OH	3
	(½ mark each)	
	Or	
	i) Ethylamine is capable of forming hydrogen bonds with water	
	as it is soluble but in aniline the bulk carbon prevents the	
	formation of effective hydrogen bonding and is not soluble.	
	(1 mark)	



	ii) A Friedel-Crafts reaction is carried out in the presence of		
	AlCl ₃ . But AlCl ₃ is acidic in nature, while aniline is a strong base.		
	Thus, aniline reacts with AlCl ₃ to form a salt and benzene ring is		
	deactivated. Hence, aniline does not undergo the Friedel-Crafts		
	reaction.		
	(1 mark)		
	iii) Gabriel phthalimide reaction gives pure primary amines		
	without any contamination of secondary and tertiary amines.		
	Therefore, it is preferred for synthesising primary amines.		
	(1 mark)		
31.	(i) Dicholorocarbene, CCl ₂		
	он соон mark) (ii) Salicylic acid		
	(1 mark)		
	Ог	4	
	(iii) OH COOH COOCH ₃ 1 COOH +(CH ₃ CO) ₂ CONC.H ₂ SO ₄ +CH ₃ COOH		
	(1 mark)		
	(iv) OH COOH Cao, NaOH Phenol		
	(1 mark)		

32.	(i) β-D-2-Deoxyribose	(1 mark)	
<i>J2</i> .	(ii) Cytosine, uracil	(1 mark)	
	(iii) Hydrogen bonds	(1 mark) (1 mark)	4
	(iv) RNA	(1 mark) (1 mark)	4
	(10) 10.771	(1 mark)	
22	20 () 25 2 () 20 2 25 ()		
33.	2Cr(a) + 3Fe3 + (aq) === 2Cr3 + 3Fe(s)		
	$E = E^{\circ} - \frac{0.059}{6} \log \frac{(0.01)^{2}}{(0.01)^{3}}$	(1 mark)	
	E° = 0.261 V		
	$E = 0.261 - \frac{0.059}{6} \log 10^{-2}$	(1 mark)	
	$=0.261 - \frac{0.059}{6} \times (-2)$		
	= 0.261 + 0.0197 = 0.2807 V	(1 mark)	
	(Deduct ½ mark for no or incorrect unit)		
	'A' will prevent iron from corrosion.		
	(1 mark)		
	So, we can cost the iron surface with metal A be	ecause it has	
	more negative E° value.		
	(1 mark)		
	Or k × 1000		
	$\Lambda m = \frac{k \times 1000}{C}$		
	$C = 0.001 M, k = 3.905 \times 10^{-5} S c$	cm^{-1}	5
	$\therefore \ \Lambda_m = \frac{3.905 \times 10^{-5} \times 1000}{0.001}$		3
		(1mark)	
	$= 39.05 \text{ S cm}^2 \text{ mol}^{-1}$		
	$CH_2COOH === CH_3COO^- + H^+$		
	$\Lambda_m^{\circ} = \lambda^{\circ} C H_3 C O O^- + \lambda^{\circ} H^+$		
	$= 40.9 + 349.6 = 390.5 \text{ S cm}^2 \text{ mol}^{-1}$	(1mark)	
	Degree of dissocistion $\alpha = \frac{\Lambda_m}{\Lambda_m^{\circ}} = \frac{39.05}{390.5} = 0.1$	(1 mark)	
	(Deduct 1 mark for no	or incorrect unit)	
	Electrochemical cell is a device used for the pro		
	electricity from energy released during spontar		
	reaction. Electrochemical cell converts chemica	- -	
	electrical energy.	(1mark)	
	If E°cell (external) > E°cell the cell starts acting as an elecase, electrical energy is used to carry out non-spontan	-	
	reaction.	Con Children	
Ī	(1 mark)		

Dibromidobis (ethylenediamins) cobalt(III) ion. (ii) (1 mark) It ionizes as : $[Co(NH_3)_6]Cl_3 [Co(NH_3)_6]^{3+} + 3Cl$ (iii) ∴ 4 ions are produced. (1 mark) (Deduct 1 mark for no or incorrect Hybridisation) 35. CH₃CH₂CHO 2 CH₃OH CH₃CH₂CH OCH₃ OCH₃ (a) (i) CH₃CH₂CHO dil NaOH CH₃CH₂ CH CH(CH₃) CHO (ii) (iii) CH₃CH₂CHO → CH₃CH₂CH₃ KOH

CH₃CH₂CH₃ (1+1+1 mark)(b) (i) CH₃COOH < HCOOH < FCH₂COOH < NO₂ - CH₂COOH (II) Acetophenone < Benzaldehyde < Acetone < Acetaldehyde 5 (1+1 mark) Or Organic compound A is an ester as on acid hydrolysis it gives a mixture of an acid and an alcohol. $(\frac{1}{2} \text{ mark})$ Oxidation of alcohol (C) gives acid (B). Hence, the number of carbon atoms in (B) and (C) are the same. (½ mark)

Ester (compound A) has eight C atoms. Hence, both carboxylic acid (B) and alcohol (C) must contain 4 C atoms each.

(½ mark)

Dehydration of alcohol C gives but-1-ene. Hence, C must be a straight chain alcohol, i.e butan-1-ol.

(½ mark)

Reactions:

$$CH_3CH_2CH_2COOCH_2CH_2CH_2CH_3 + \frac{\text{dil. H}_2SO_4}{}$$

$$CH_3CH_2CH_2COOH + CH_3CH_2CH_2CH_2OH$$

(1 mark)

$$CH_3CH_2CH_2CH_2OH \xrightarrow{\text{Dehydratio}} CH_3CH_2CH = CH_2$$

(1 mark)

 $CH_3CH_2CH_2CH_2OH$ CrO3/CH3COOH $CH_3CH_2CH_2COOH$ (1 mark)

