

General Aptitude

Q.1 – Q.5 Carry ONE mark Each

Q.1	Despite his initial hesitation, Rehman's to contribute to the success of the project never wavered. Select the most appropriate option to complete the above sentence.
(A)	ambivalence
(B)	satisfaction
(C)	resolve
(D)	revolve

GATE 2025

Weeker

Q.2	Bird : Nest :: Bee :
	Select the correct option to complete the analogy.
(A)	Kennel
(B)	Hammock
(C)	Hive
(D)	Lair

GATE 2025

Week Roorkee

Q.3	If $Pe^x = Qe^{-x}$ for all real values of x , which one of the following statements is true?
(A)	P = Q = 0
(B)	P=Q=1
(C)	P = 1; Q = -1
(D)	$\frac{P}{Q} = 0$

Q.4	The paper as shown in the figure is folded to make a cube where each square corresponds to a particular face of the cube. Which one of the following options correctly represents the cube?				
	Note: The figures shown are representative.				
	Δ Δ				
	0				
(A)	Δ				
(B)					
(C)	Δ				
(D)					
	CATE 2025				
	17 Roorkee				

Q.5	Let p_1 and p_2 denote two arbitrary prime numbers. Which one of the following statements is correct for all values of p_1 and p_2 ?
(A)	$p_1 + p_2$ is not a prime number.
(B)	p_1p_2 is not a prime number.
(C)	$p_1 + p_2 + 1$ is a prime number.
(D)	$p_1p_2 + 1$ is a prime number.

Q.6 – Q.10 Carry TWO marks Each

Q.6	Based only on the conversation below, identify the logically correct inference: "Even if I had known that you were in the hospital, I would not have gone there to see you", Ramya told Josephine.				
(A)	Ramya knew that Josephine was in the hospital.				
(B)	Ramya did not know that Josephine was in the hospital.				
(C)	Ramya and Josephine were once close friends; but now, they are not.				
(D)	Josephine was in the hospital due to an injury to her leg.				

Organizing Institute: IIT Roorkee Page 6 of 65

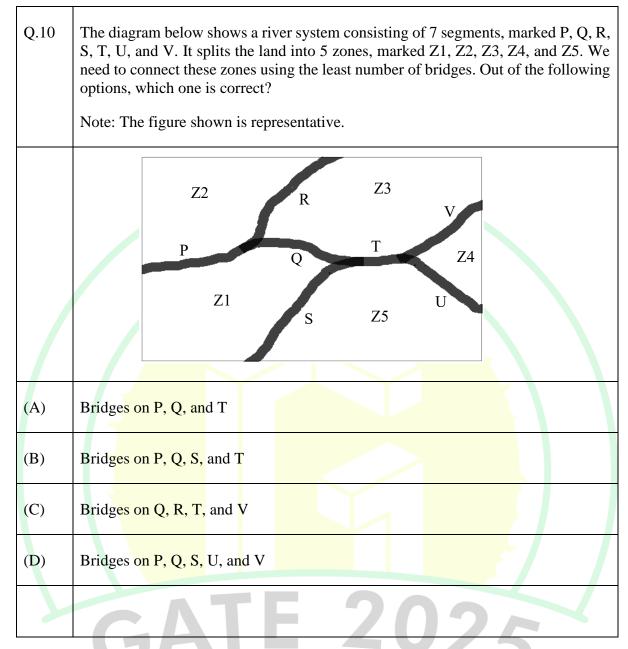
Q.7	If IMAGE and FIELD are coded as FHBNJ and EMFJG respectively then, which one among the given options is the most appropriate code for BEACH?
(A)	CEADP
(B)	IDBFC
(C)	JGIBC
(D)	IBCEC

GATE 2025

Week
Roorkee

Q.8	Which one of the following options is correct for the given data in the table?						
		Iteration (i)	0	1	2	3	
		Input (I)	20	-4	10	15	
		Output (X)	20	16	26	41	
		Output (Y)	20	-80	-800	-12000	
(A)	X(i) = X(i)	-1)+I(i);	Y(i) = Y	′(i – 1)I(i); i >	0	
(B)	X(i) = X(i - 1)	– 1)I(i); Y((i) = Y(i)	(-1) + I((i); i >	0	
(C)	X(i) = X(i - i)	-1)I(i); Y	Y(i) = Y(i)	(i-1)I(i)	i > 0		
(D)	X(i) = X(i - i)	-1)+I(i);	Y(i) =	Y(i-1)I	(i-1);	<i>i</i> > 0	

GATE 2025
Weeker



Q.9	In the given figure, PQRS is a square of side 2 cm and PLMN is a rectangle. The corner L of the rectangle is on the side QR. Side MN of the rectangle passes through the corner S of the square.
	What is the area (in cm ²) of the rectangle PLMN?
	Note: The figure shown is representative.
	$\begin{array}{c} P \\ \hline \\ Q \\ \hline \\ L \\ \end{array}$
(A)	$2\sqrt{2}$
(B)	2
(C)	8
(D)	4
	ATE OO

Organizing Institute: IIT Roorkee

17 Roorkee

Organizing Institute: IIT Roorkee Page 10 of 65

Q.11 – Q.35 Carry ONE mark Each

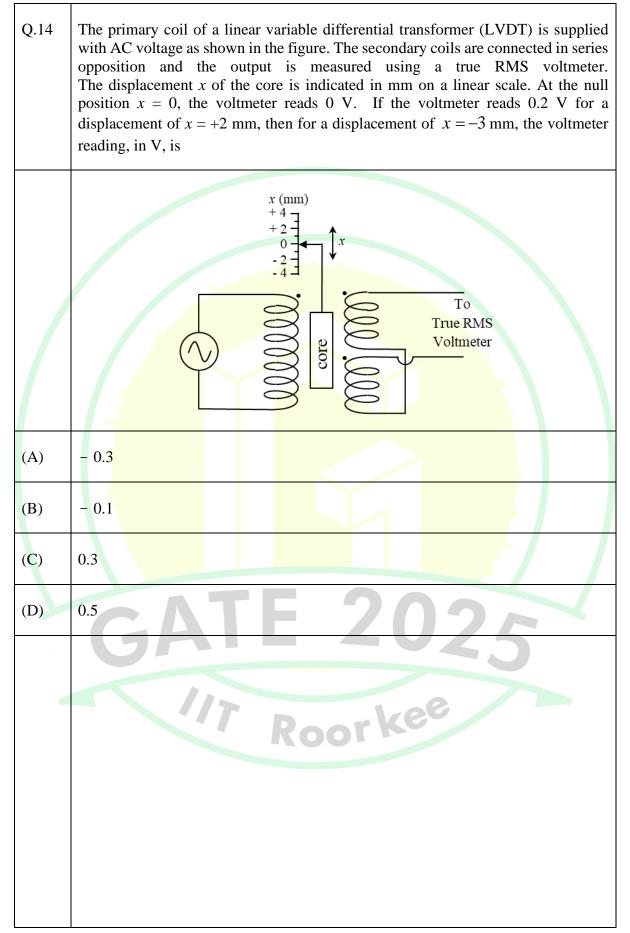
Q.11 A $2n \times 2n$ matrix $A = [a_{ij}]$ has its elements as

$$a_{ij} = \begin{cases} \beta & \text{if } (i+j) \text{ is odd,} \\ -\beta & \text{if } (i+j) \text{ is even,} \end{cases}$$

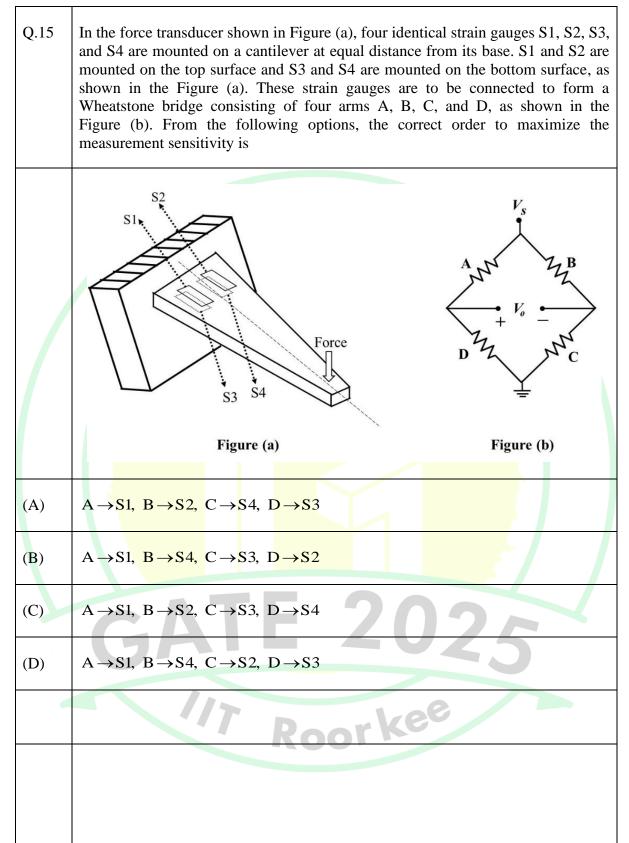
where n is any integer greater than 2 and β is any non-zero real number. The rank of A is

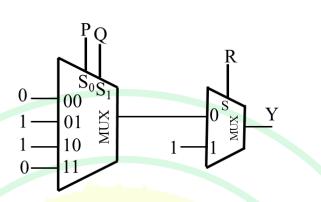
- (A) 1
- (B) 2
- (C) n
- (D) 2n

GATE 2025


Q.12	The solution of the differential equation $\frac{dy}{dx} = 9\frac{x}{y}$ represents
(A)	a hyperbola
(B)	a parabola
(C)	an ellipse
(D)	a circle
	GATE 2025 Proorkee Roorkee

Q.13	The working of the hand-held metal detector most widely used by security personnel for human frisking is based on the principle of			
(A)	change in reluctance of an iron core in presence of a metallic object			
(B)	change in conductance of an iron core in presence of a metallic object			
(C)	electric field induced by a metallic object			
(D)	eddy current generation in a metallic object			
	GATE 2025 Weeker Roorkee			


Organizing Institute: IIT Roorkee F



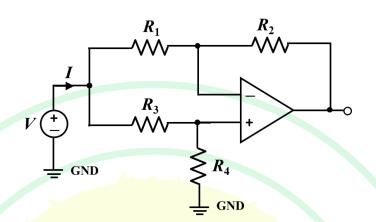
Q.16	Let a continuous-time signal be $x(t) = e^{j9t} + e^{j5t}$, where $j = \sqrt{-1}$ and t is in seconds. The fundamental period of magnitude of $x(t)$, in seconds, is
(A)	π
(B)	$\frac{\pi}{2}$
(C)	$\frac{\pi}{5}$
(D)	$\frac{\pi}{9}$
	GATE 2025
	17 Roorkee

Organizing Institute: IIT Roorkee

Q.17 The minimized expression of the Boolean function Y(P, Q, R) implemented by the multiplexer (MUX) circuit shown in the figure is

- $(A) Y = R + (P \oplus Q)$
- $(B) \qquad Y = R \ (P \oplus Q)$
- (C) $Y = R + (\overline{P \oplus Q})$
- (D) $Y = R \oplus (P \oplus Q)$

GATE 2025


	T
Q.18	The 4-bit signed 2's complement form of $(5)_{10} + (5)_{10}$ is
(A)	$(-6)_{10}$
(B)	$(-7)_{10}$
(C)	$(-5)_{10}$
(D)	$(-8)_{10}$
	GATE 2025 Proorkee Roorkee

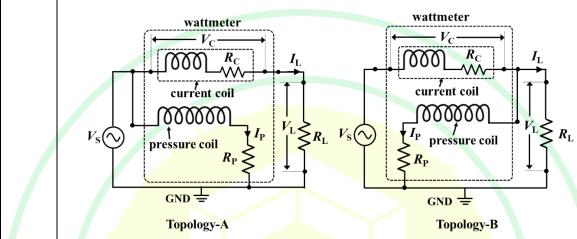
Q.19	An infinite sheet of uniform charge $\rho_s = 10 \text{ C/m}^2$ is placed on $z = 0$ plane. The medium surrounding the sheet has a relative permittivity of 10. The electric flux density, in C/m ² , at a point P(0, 0, 5), is Note: \hat{a} , \hat{b} , and \hat{c} are unit vectors along the x , y , and z directions, respectively.
(A)	$5\hat{c}$
(B)	$0.25\hat{c}$
(C)	$10\hat{c}$
(D)	$0.5\hat{c}$
	GATE 2025 Vr Roorkee

	Q.20	For the ideal opamp based circuit shown in the figure, the ratio $\frac{V}{I}$ is
--	------	---

(A)
$$\left(\frac{R_3 + R_4}{R_1 + R_3}\right) R_1$$

(B)
$$\left(\frac{R_2 + R_4}{R_1 + R_3}\right) R_3$$

(C)
$$R_1 + R_3$$


(D)
$$R_3 + R_4$$

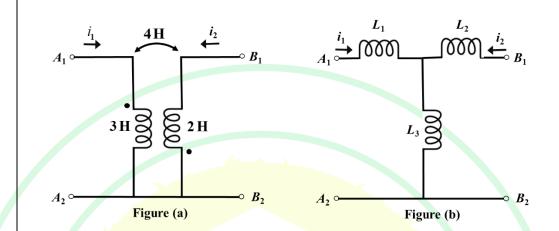
17 Roorkee

Q.21 In a single-phase AC circuit, the power consumed by load resistance $R_{\rm L}$ for an excitation $V_{\rm S}$ is measured using a wattmeter. The same wattmeter is connected in two different topologies, Topology-A and Topology-B, as shown in the figure. Different branch currents and voltage drops are also marked in the figure. Among the following options, the condition that ensures low error in the wattmeter reading for both the topologies is $\frac{\text{wattmeter}}{V_{\rm C}}$

- (A) $V_L \gg V_C$ for Topology-A and $I_L \gg I_P$ for Topology-B
- (B) $V_L \gg V_C$ for Topology-A and $I_L \ll I_P$ for Topology-B
- (C) $V_L \ll V_C$ for Topology-A and $I_L \ll I_P$ for Topology-B
- (D) $V_L \ll V_C$ for Topology-A and $I_L \gg I_P$ for Topology-B

/// Roorkee

Q.22	Match the following sensors with their most suitable applications.
	Sensor Application
	P Rotary Variable Differential I Vacuum measurement Transformer
	Q Thermocouple II Force measurement
	R Ionization Gauge III Angular displacement measurement
	S Strain Gauge IV Temperature measurement
(A)	P-II, Q-III, R-I, S-IV
(B)	P-II, Q-IV, R-III, S-I
(C)	P-III, $Q-IV$, $R-II$, $S-I$
(D)	P-III, $Q-IV$, $R-I$, $S-II$
	ATE OO
	GAIE 2025
	1/17 1/08
	Roorke


Organizing Institute: IIT Roorkee

Q.23	A $3\frac{1}{2}$ digit digital voltmeter has a specified accuracy of $\pm (0.5\% + 1)$. If it is used to measure 10 V DC voltage, the error in the measurement would be Note: Accuracy of the digital voltmeter is expressed as $\pm (\%$ of reading + digit).
(A)	± 0.4 %
(B)	± 1.5 %
(C)	± 0.6 %
(D)	± 1%
	GATE 2025 Vir Roorkee

Q.24 The circuit shown in Figure (a) can be represented using its equivalent T-model as shown in Figure (b). The values of the inductances L_1 , L_2 , and L_3 in the equivalent T-model are

- (A) $L_1 = 7 \text{ H}, L_2 = 6 \text{ H}, L_3 = -4 \text{ H}$
- (B) $L_1 = -1 \text{ H}, L_2 = -2 \text{ H}, L_3 = 4 \text{ H}$
- (C) $L_1 = 3 \text{ H}, L_2 = 2 \text{ H}, L_3 = 9 \text{ H}$
- (D) $L_1 = 1 \text{ H}, L_2 = -2 \text{ H}, L_3 = -4 \text{ H}$

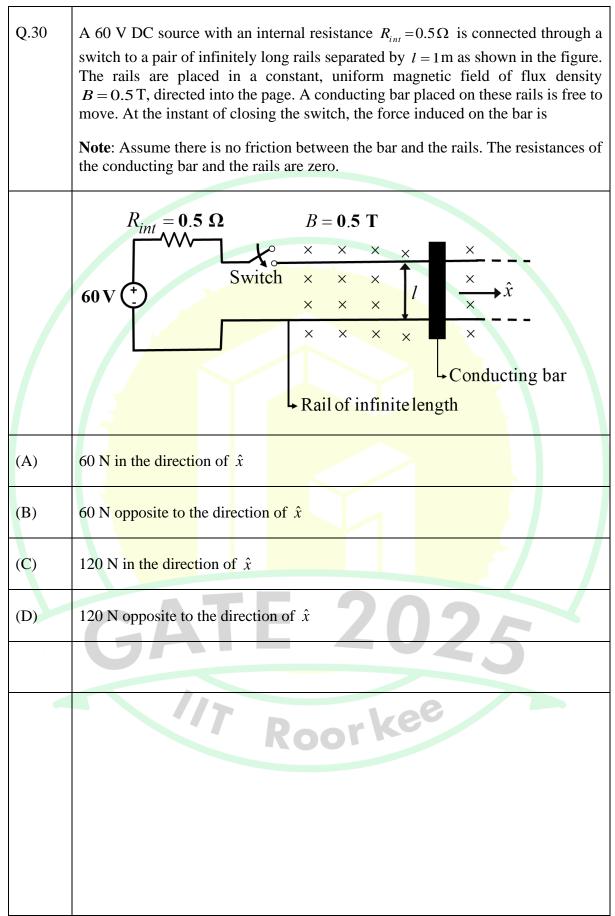
Roorkee

Q.25	Three parallel admittances $Y_a = -j0.2 \mathrm{S}$, $Y_b = 0.3 \mathrm{S}$, and $Y_c = j0.4 \mathrm{S}$ connected in parallel with a voltage source $V_s = 10 \angle 45^\circ \mathrm{V}$, draw a total current I_s from the source. The currents flowing through each of these admittances are I_a , I_b , and I_c , respectively. Let $I = I_b + I_c$. The phase relation between I and I_s is
(A)	I leads I_s by 19.44°
(B)	I lags I_s by 19.44°
(C)	I leads I_s by 33.69°
(D)	I lags I _s by 33.69°

Q.26	An oscilloscope has an input resistance of $1~M\Omega$. A $10X$ passive attenuating probe is connected to it to increase the input voltage range as well as the effective input resistance. The effective input resistance, in $M\Omega$, seen into the probe tip is
(A)	0.9
(B)	9.1
(C)	10
(D)	11
	GATE 2025 Week Roorkee

Q.27	For the transfer function $G(s) = 1 + \frac{2s - 1}{s^3 + 5s^2 + 3s + 22}$, the number of zeros lying in the left half of the <i>s</i> -plane is
(A)	0
(B)	1
(C)	2
(D)	3
	GATE 2025 Roorkee

Q.28	Consider the control system block diagram given in Figure (a). The loop transfer function $G(s)H(s)$ does not have any pole on the $j\omega$ -axis. The counterclockwise contour with infinite radius, as shown in Figure (b), encircles two poles of $G(s)H(s)$. Choose the correct statement from the following options for closed loop stability of the system.
	f(s) $f(s)$
(A)	The locus of $G(s)H(s)$ should encircle the origin twice in the counterclockwise direction
(B)	The locus of $1+G(s)H(s)$ should encircle the origin twice in the clockwise direction
(C)	The locus of $G(s)H(s)$ should encircle the $-1+j0$ point twice in the counterclockwise direction
(D)	The locus of $1+G(s)H(s)$ should encircle the $-1+j0$ point twice in the clockwise direction
	17 Roorkee

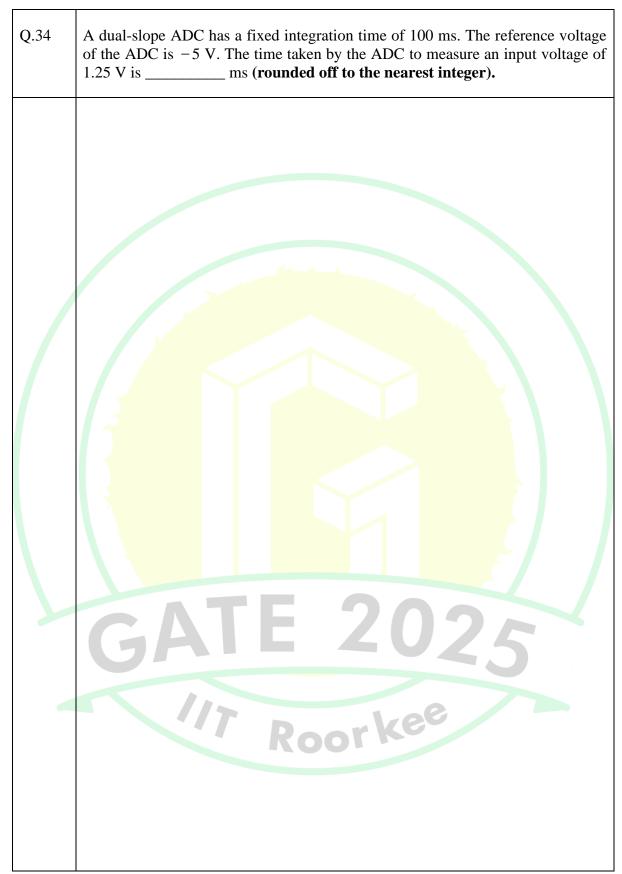

Organizing Institute: IIT Roorkee

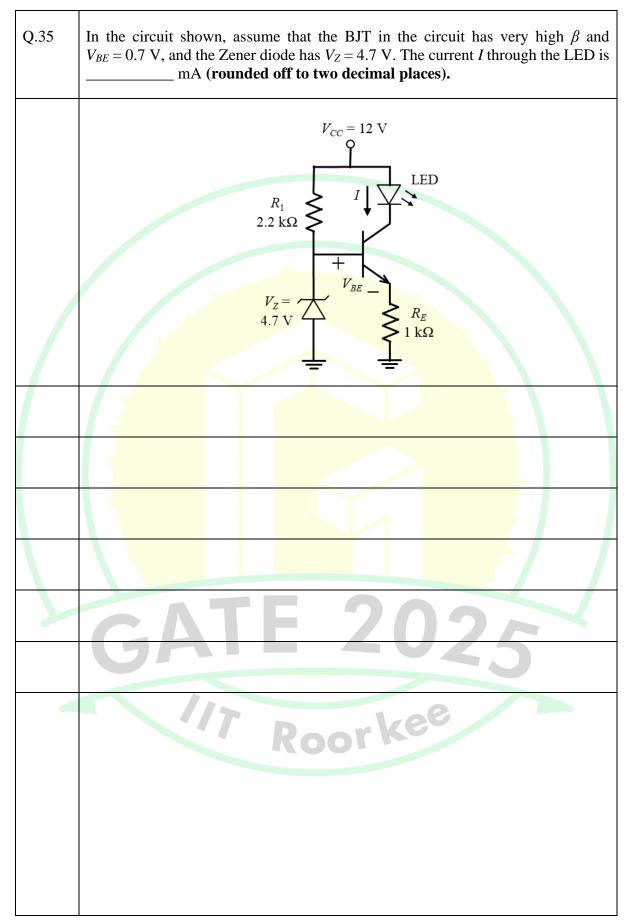
Q.29	A Boolean function X is given as $X = \overline{A} \ \overline{B} + \overline{A} \ \overline{C}$. The reduced form of \overline{X} is
(A)	$\overline{A} + \overline{B} + \overline{C}$
(B)	A+BC
(C)	$\overline{A} + \overline{B} + C$
(D)	B+AC
	GATE 2025 Vi Roorkee

Organizing Institute: IIT Roorkee

Organizing Institute: IIT Roorkee Page 30 of 65

Q.31	The circuits mentioned in the following options are realized using ideal opamp. Among these, the circuit(s) performing non-linear operation on the input signal is/are
(A)	Instrumentation amplifier
(B)	Schmitt trigger
(C)	Logarithmic amplifier
(D)	Precision rectifier
	GATE 2025
	1/7 - 1/08
	7 Roorkee


Q.32	If one of the eigenvectors of the matrix $A = \begin{bmatrix} -1 & -1 \\ x & -4 \end{bmatrix}$ is along the direction
	of $\begin{bmatrix} \alpha \\ 2\alpha \end{bmatrix}$, where α is any non-zero real number, then the value of x is (in integer).
	is (m integer).



Roof Ro	
Q.33	Consider the function $f(z) = \frac{2z+1}{z^2-z}$, where z is a complex variable. The sum of the residues at singular points of $f(z)$ is (in integer).
	GATE 2025 Roorkee

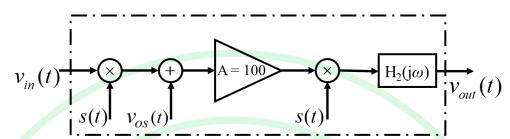
Q.36 – Q.65 Carry TWO marks Each

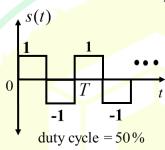
Q.36	The value of the surface integral $\iint_{S} (2x+z) dy dz + (2x+z) dx dz + (2z+y) dx dy$
	over the sphere $S: x^2 + y^2 + z^2 = 9$ is
(A)	72π
(B)	144π
(C)	36π
(D)	432π
	GATE 2025 Proorkee Roorkee

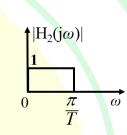
Q.37	Newton-Raphson method is used to compute the inverse of the number 1.6. Among the following options, the initial guess of the solution that results in non-convergence of the iterative process is
(A)	0.55
(B)	0.75
(C)	1.15
(D)	1.25
	GATE 2025 Roorkee

Organizing Institute: IIT Roorkee

_	
Q.38	The value of the integral $\int_{-\pi}^{\pi} (\cos^6 x + \cos^4 x) dx$ is
(A)	$\frac{\pi}{2}$
(B)	$\frac{5\pi}{8}$
(C)	$\frac{11\pi}{8}$
(D)	$\frac{9\pi}{8}$
	GAIL 2025
	17 Roorkee
1	

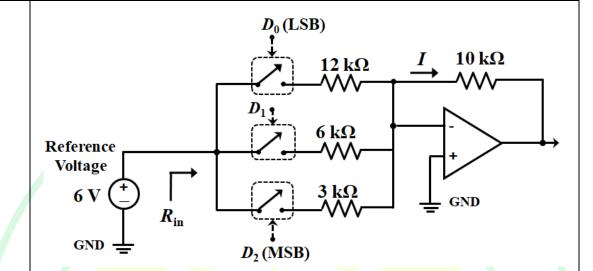

Q.39	Let $y[n] = \frac{1}{\alpha}y[n-1] + x[n]$, where $\alpha > 1$ and real, represent a difference equation of a causal discrete-time linear time invariant system. The system is initially at rest. If $x[n] = \delta[n-p]$ where $p > 10$, the value of $y[p+1]$ is
(A)	0
(B)	1
(C)	$\frac{1}{\alpha}$
(D)	$\frac{1}{\alpha^2}$
	CATE 202
	117 Poorkee


Q.40 The clock frequency of the digital circuit shown in the figure is 12 MHz. The frequencies of the output (F) corresponding to Control = 0 and Control = 1, respectively, are DD·F Control clock (A) 4 MHz and 6 MHz (B) 6 MHz and 4 MHz (C) 3 MHz and 4 MHz (D) 3 MHz and 6 MHz



Q.41 A chopper amplifier shown in the figure is designed to process a biomedical signal $v_{in}(t)$ to generate conditioned output $v_{out}(t)$. The signals $v_{in}(t)$ and $v_{os}(t)$ are band limited to 50 Hz and 10 Hz, respectively. For the system to operate as a linear amplifier, choose the correct statement from the following options.

- (A) The minimum frequency of s(t) required is 100 Hz and $v_{os}(t)$ gets attenuated by the system
- (B) The minimum frequency of s(t) required is 100 Hz and $v_{os}(t)$ also gets amplified by the system by a factor $\frac{200}{\pi}$
- (C) The minimum frequency of s(t) required is 80 Hz and $v_{os}(t)$ gets attenuated by the system
- (D) The minimum frequency of s(t) required is 80 Hz and $v_{os}(t)$ also gets amplified by the system by a factor $\frac{200}{\pi}$



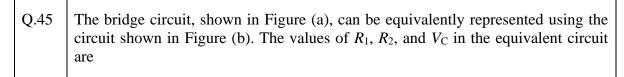
Q.42	An 8-bit microprocessor has 16-bit address bus $(A_{15} - A_0)$ where A_0 is the LSB. As shown in Figure (a), it has a pre-installed 4 KB ROM whose starting address is 0000 H. The processor needs to be upgraded by adding a 16 KB RAM as shown in Figure (b). The address range for the newly added RAM is
(A) (B) (C) (D)	Pre-installed ROM A ₀ A ₁

Q.43 A 3-bit DAC is implemented using ideal opamp and switches as shown in the figure. Each of the switches gets closed when its corresponding digital input is at logic 1. For a digital input of 110, the resistance $R_{\rm in}$ seen from the reference source and the current I, are

- (A) $R_{\rm in} = 2 k\Omega \text{ and } I = 3 \text{ mA}$
- (B) $R_{\rm in} = 12 \text{ k}\Omega \text{ and } I = 0.5 \text{ mA}$
- (C) $R_{\rm in} = \infty \Omega \text{ and } I = 1 \text{ mA}$
- (D) $R_{\rm in} = \infty \Omega \text{ and } I = 3 \text{ mA}$

GATE 2025

// Roorkee



Q.44	Power consumed by a three-phase balanced load is measured using two-wattmeter method. The per-phase average power drawn by the load is 30 kW at $\frac{\sqrt{3}}{2}$ lagging power factor. The readings of the wattmeters will be
(A)	15 kW and 15 kW
(B)	22.5 kW and 7.5 kW
(C)	60 kW and 30 kW
(D)	45 kW and 4 <mark>5 kW</mark>
	GATE 2025 Week Roorkee

Organizing Institute: IIT Roorkee Page **44** of **65**

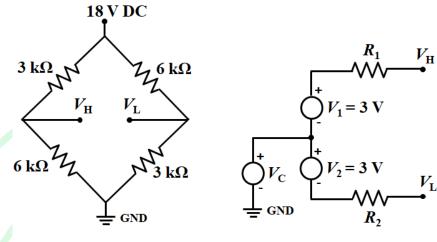


Figure (a)

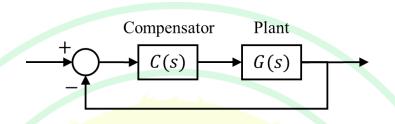
Figure (b)

(A)
$$R_1 = 6 \text{ k}\Omega, R_2 = 3 \text{ k}\Omega, \text{ and } V_C = 9 \text{ V}$$

(B)
$$R_1 = 3 \text{ k}\Omega, R_2 = 6 \text{ k}\Omega, \text{ and } V_C = 4.5 \text{ V}$$

(C)
$$R_1 = 2 \text{ k}\Omega, R_2 = 2 \text{ k}\Omega, \text{ and } V_C = 9 \text{ V}$$

(D)
$$R_1 = 2 \text{ k}\Omega, R_2 = 2 \text{ k}\Omega, \text{ and } V_C = 4.5 \text{ V}$$


GATE 2025

Q.46	A 2-pole, 50 Hz, 3-phase induction motor supplies power to a certain load at 2970 rpm. The torque-speed curve of this machine follows a linear relationship between synchronous speed and 95 % of synchronous speed. Assume mechanical and stray losses to be zero. If the load torque of the motor is doubled, the new operating speed of the motor, in rpm, is
(A)	2940
(B)	2812
(C)	2970
(D)	2850
	GATE 2025 Week Roorkee

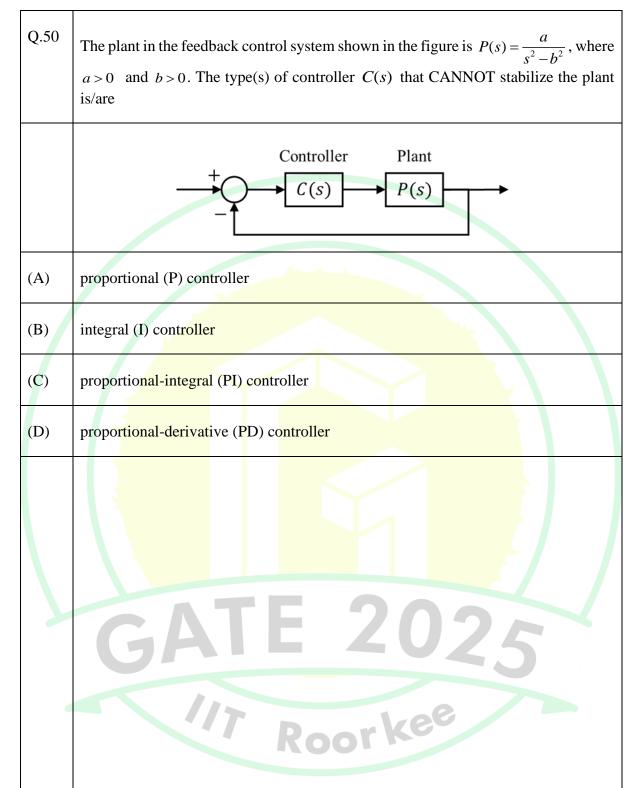
Q.47	The figure shows a closed-loop system with a plant $G(s) = \frac{1}{s^2}$ and a lead
	compensator $C(s)$. The compensator is designed to place the dominant closed-loop
	poles at $-1.5 \pm j \frac{\sqrt{27}}{2}$. From the following options, choose the phase lead that the
	compensator needs to contribute.

- (A) 30°
- (B) 60°
- (C) 90°
- (D) 120°

GATE 2025

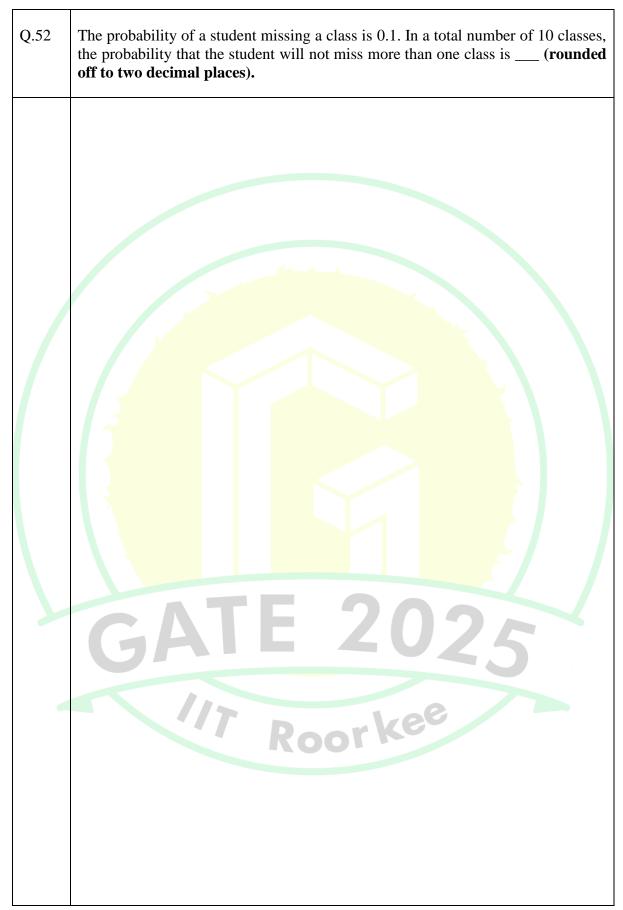
//r Roorkee

Q.48	Let $f(t)$ and $g(t)$ represent continuous-time real-valued signals. If $h(t)$ denotes cross-correlation between $f(t)$ and $g(-t)$, its continuous-time Fourier transform $H(j\omega)$ equals
	Note : $F(j\omega)$ and $G(j\omega)$ denote the continuous-time Fourier transforms of $f(t)$ and $g(t)$, respectively.
(A)	$F(j\omega)G(j\omega)$
(B)	$F(-j\omega)G(j\omega)$
(C)	$F(j\omega)G(-j\omega)$
(D)	$-F(j\omega)G(-j\omega)$
	GATE 2025
	1/17 Roorkee


Organizing Institute: IIT Roorkee Page 48 of 65

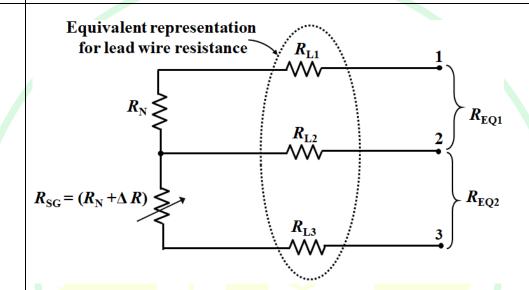
Q.49	Choose the correct statement(s) from the following options, regarding Cauchy's theorem on complex integration $\oint_C f(z) dz$ where C is a simple closed path in a simply connected domain D .
(A)	Cauchy's theorem cannot be directly applied to conclude that $\oint_C f(z) \mathrm{d}z = 0$ when $f(z) = \frac{1}{z^2}$, and C is the unit circle
(B)	If $f(z)$ is analytic in D , then it can be concluded that $\oint_C f(z) dz = 0$ for any simple closed path C in D
(C)	The function $f(z)$ must be analytic in D to conclude $\oint_C f(z) dz = 0$ for any simple closed path C in D
(D)	$\oint_C f(z) dz \neq 0$ when $f(z) = \frac{1}{z^2}$, since the function is not analytic at $z = 0$
	GATE 2025 Wr Roorkee

Organizing Institute: IIT Roorkee Page **49** of **65**



0.51	Change the significant on (a) of stable lines at time in the stable significant of the stable si
Q. 51	Choose the eigenfunction(s) of stable linear time-invariant continuous-time systems from the following options.
(A)	$e^{j\frac{2\pi}{3}t}$
(B)	$\cos\left(\frac{2\pi}{3}t\right)$
(C)	2^t
(D)	$\sin\left(\frac{2\pi}{3}t\right)$
	GATE 2025
	17 Roorkee
Ī	

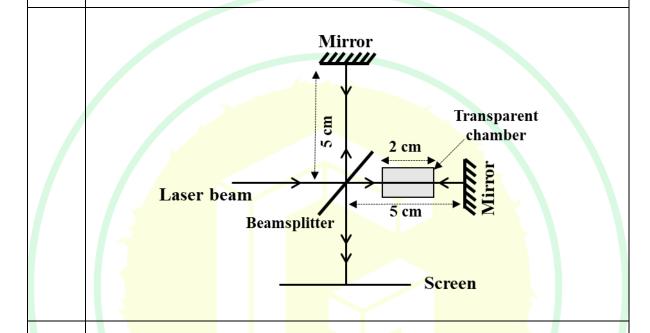
Organizing Institute: IIT Roorkee



Q.53 A metallic strain-gauge (SG) with resistance R_{SG} is connected as shown in the figure, where R_{L1} , R_{L2} , R_{L3} represent the lead wire resistances. The SG has a gauge factor of 2 and nominal resistance R_{N} of 125 Ω . When the SG is subjected to a tensile strain of 2×10^{-3} , the resulting change in R_{SG} is ΔR . The ΔR value is measured as $\Delta R_{MEAS} = R_{EQ2} - R_{EQ1}$. The R_{EQ1} and R_{EQ2} are the equivalent resistances measured between the terminals 1 and 2, and terminals 2 and 3, respectively.

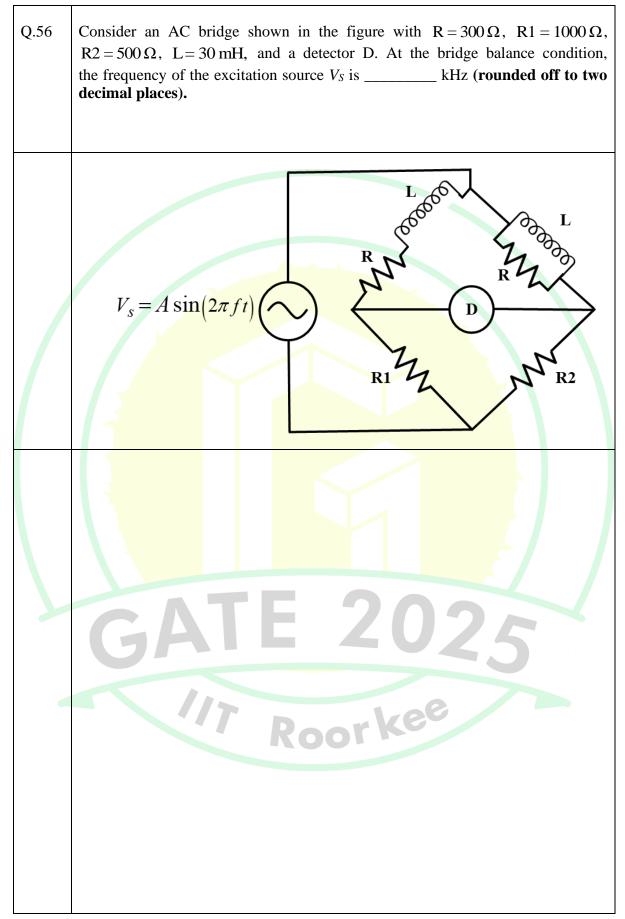
If $R_{L1} = R_{L2} = 5 \Omega$, and $R_{L3} = 4.95 \Omega$, the measured value of tensile strain is ____×10⁻³ (rounded off to two decimal places).

Organizing Institute: IIT Roorkee Page 53 of 65


Q.54 Let $X\left(e^{j\omega}\right)$ represent the discrete time Fourier transform of a 4-length sequence x[n], where x[0]=1, x[1]=2, x[2]=2, and x[3]=4. $X\left(e^{j\omega}\right)$ is sampled at $\omega_k = \frac{2\pi k}{3}$ to generate a periodic sequence in k with period 3, where k represents an integer. Let y[n] represent another sequence such that its discrete Fourier transform Y[k] is given as $Y[k] = X\left(e^{j\omega_k}\right)$ for $0 \le k \le 2$. The value of y[0] is _____ (in integer).

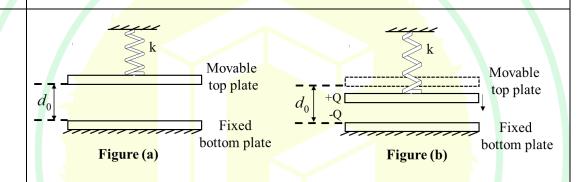
Q.55 A schematic of a Michelson interferometer, used for the measurement of refractive index of gas, is shown in the figure. The transparent chamber is filled with a gas of refractive index n_g , where $n_g \neq 1$, at atmospheric pressure. If a 532 nm laser beam produces 30 interference fringes on the screen, then the number of fringes produced by a 632.8 nm laser beam will be _____ (rounded off to one decimal place).

Note: Assume that the effect of beamsplitter width is negligible. The setup is placed in air medium with refractive index equal to 1.



GATE 2025

Wr Roorkee

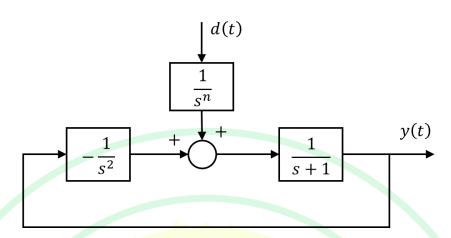


Organizing Institute: IIT Roorkee Page **56** of **65**

Q.57 An air filled parallel plate electrostatic actuator is shown in the figure. The area of each capacitor plate is $100 \, \mu m \times 100 \, \mu m$. The distance between the plates $d_0 = 1 \, \mu m$ when both the capacitor charge and spring restoring force are zero as shown in Figure (a). A linear spring of constant $k = 0.01 \, \text{N/m}$ is connected to the movable plate. When charge is supplied to the capacitor using a current source, the top plate moves as shown in Figure (b). The magnitude of minimum charge (Q) required to momentarily close the gap between the plates is _____× $10^{-14} \, \text{C}$ (rounded off to two decimal places).

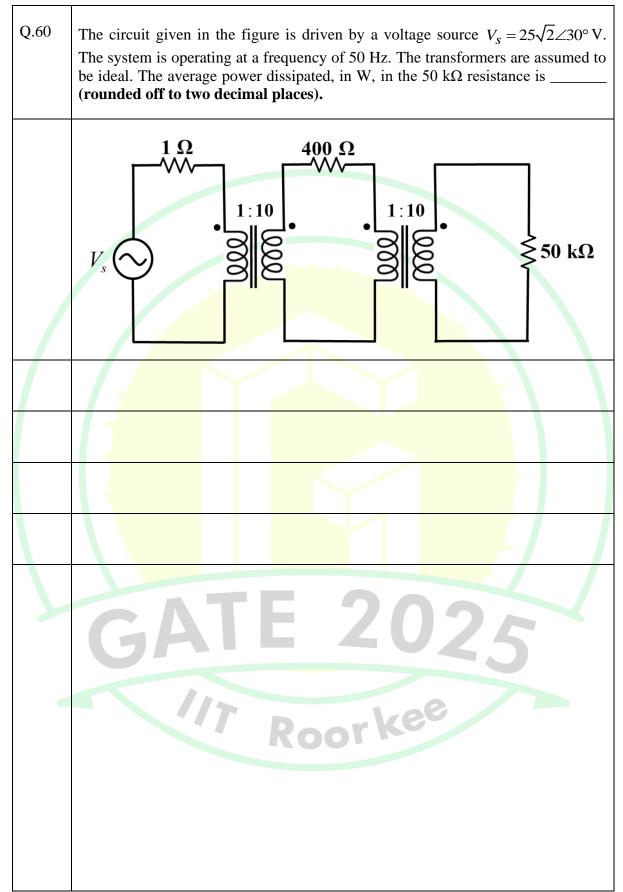
Note: Assume a full range of motion is possible for the top plate and there is no fringe capacitance. The permittivity of free space is $\varepsilon_o = 8.85 \times 10^{-12}$ F/m and relative permittivity of air (ε_r) is 1.

GATE 2025

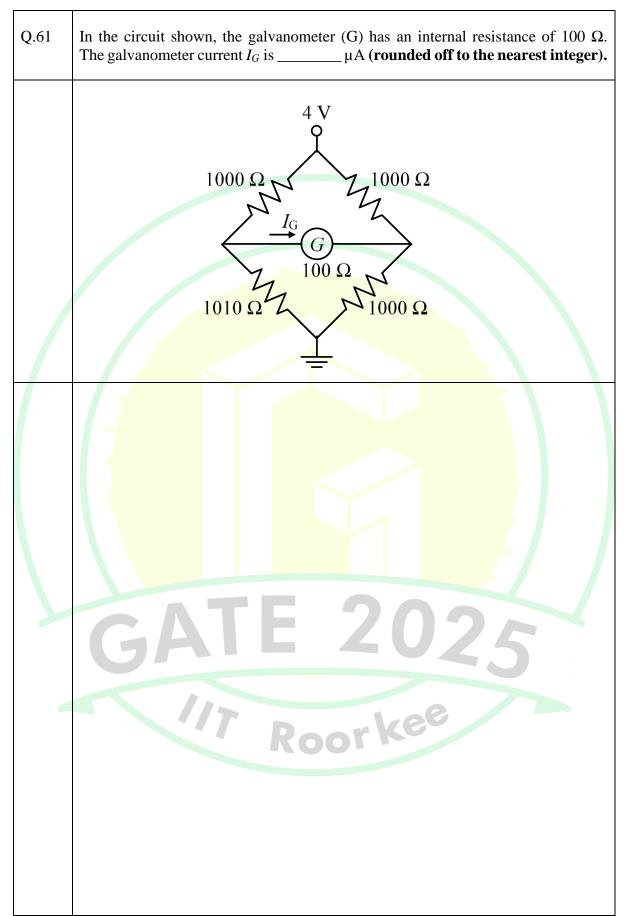

Wr Roorkee

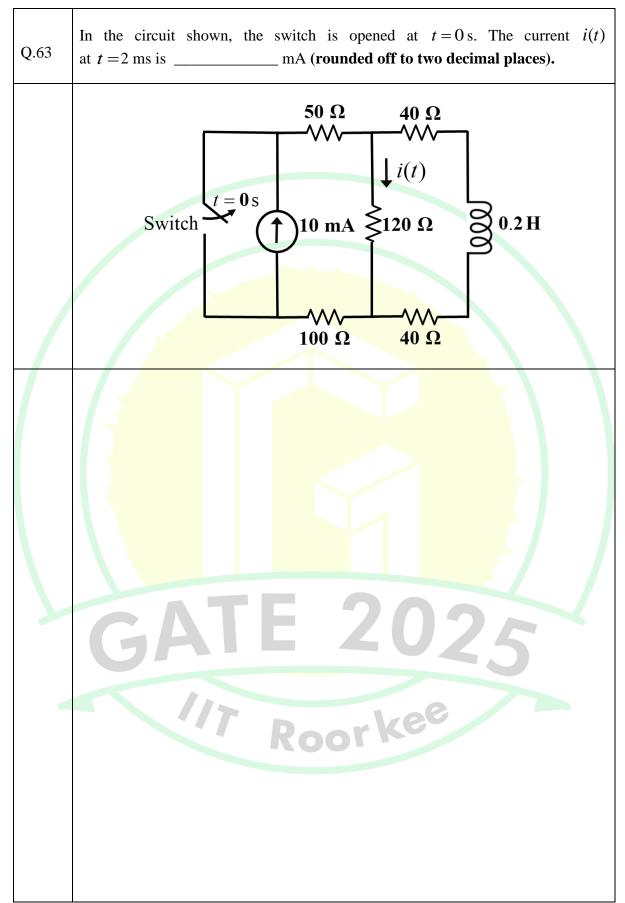
Q.58	The resistance of a thermistor is measured to be 2.25 k Ω at 30 °C and 1.17 k Ω at 60 °C. Its material constant β is K (rounded off to two decimal places).
	GATE 2025 Roorkee

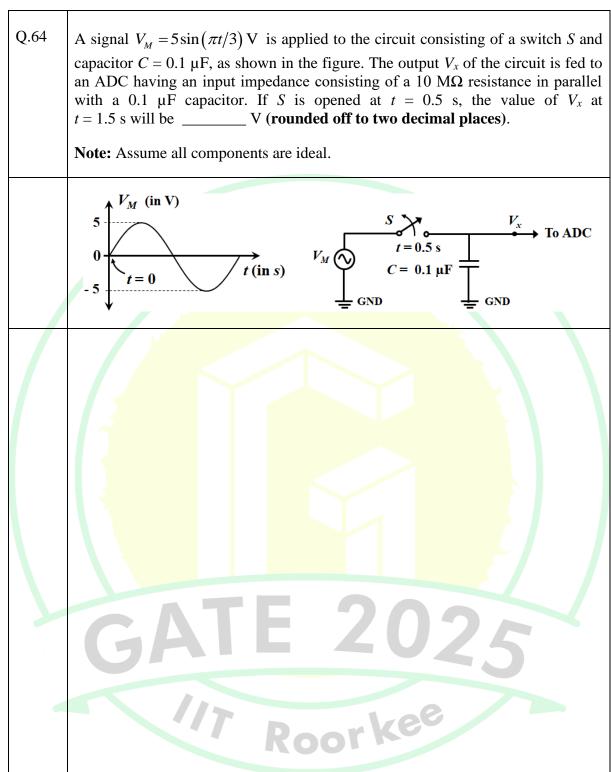
Q.59 A feedback control system is shown in the figure.

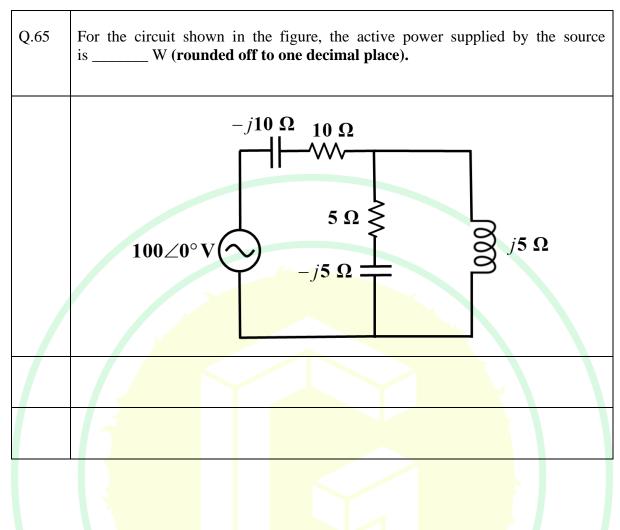

The maximum allowable value of n such that the output y(t), due to any step disturbance signal d(t), becomes zero at steady-state, is _____ (in integer).

GATE 2025


Wr Roorkee




Q.62	A series RLC circuit resonates at 7500 rad/s for inductance $L = 20$ mH and resistance $R = 10 \Omega$. The uncertainties in the measurement of L and R are 0.8 mH and 0.3 Ω , respectively. The percentage uncertainty in the measurement of quality factor is% (rounded off to one decimal place).
	GATE 2025 W Roorkee



GATE 2025