JEE Main 2023 8 April Shift 2 Physics Question Paper

Time Allowed :3 Hours | **Maximum Marks :**300 | **Total Questions :**90

General Instructions

Read the following instructions very carefully and strictly follow them:

- 1. The Duration of test is 3 Hours.
- 2. This paper consists of 90 questions.
- 3. There are three parts in the paper consisting of Physics, Chemistry and Mathematics having 30 questions in each part of equal weightage..
- 4. Each part (subject) has two sections.
 - (i) Section-A: This section contains 20 multiple choice s which have only one correct answer. Each carries 4 marks for correct answer and –1 mark for wrong answer..
- 5. (ii) Section-B: This section contains 10 s. In Section-B, attempt any five s out of 10. The answer to each of the s is a numerical value. Each carries 4 marks for correct answer and -1 mark for wrong answer. For Section-B, the answer should be rounded off to the nearest integer.

1. A hydraulic automobile lift is designed to lift vehicles of mass $5000 \, \text{kg}$. The area of cross-section of the cylinder carrying the load is $250 \, \text{cm}^2$. The maximum pressure the smaller piston would have to bear is:

(1)
$$2 \times 10^5 \, \text{Pa}$$

(2)
$$20 \times 10^6 \, \text{Pa}$$

(3)
$$200 \times 10^6 \, \text{Pa}$$

(4)
$$2 \times 10^6 \, \text{Pa}$$

2. The orbital angular momentum of a satellite is L, when it is revolving in a circular orbit at height h from the earth's surface. If the distance of the satellite from the earth's center is increased by eight times its initial value, then the new angular momentum will be:

- (1) 8L
- (2) 3L
- (3) 4L
- (4) 9*L*

3. The waves emitted when a metal target is bombarded with high-energy electrons are:

- (1) Microwaves
- (2) X-rays
- (3) Radio Waves
- (4) Infrared Rays

4. Match List I with List II:

List I	List II	
A. Torque	I. ML^2T^{-2}	
B. Stress	II. $ML^{-1}T^{-2}$	
C. Pressure gradient	III. $ML^{-1}T^{-1}$	
D. Coefficient of viscosity	IV. $ML^{-1}T^{-1}$	

Choose the correct answer from the options given below:
(1) A-III, B-IV, C-I, D-II
(2) A-II, B-I, C-IV, D-III
(3) A-IV, B-II, C-III, D-I

5. Give below are two statements:

(4) A-II, B-IV, C-I, D-III.

- **Statement I:** Area under velocity-time graph gives the distance traveled by the body in a given time.
- **Statement II:** Area under acceleration-time graph is equal to the change in velocity in the given time.

In the light of the given statements, choose the correct answer from the options given below:

- (1) Both Statement I and Statement II are true.
- (2) Statement I is correct but Statement II is false.
- (3) Both Statement I and Statement II are false.
- (4) Statement I is incorrect but Statement II is true.

6. The power	r radiated from	a linear antenn	a of length l is p	proportional to:	(Given, $\lambda =$
Wavelength o	of wave):				

- (1) $\frac{l}{\lambda}$
- (2) $\frac{l^2}{\lambda}$
- (3) $\frac{l}{\lambda^2}$
- (4) $\left(\frac{l}{\lambda}\right)^2$

7. Electric potential at a point P due to a point charge of 5×10^{-9} C is 50 V. The distance of P from the point charge is:

- (1) 3 cm
- (2) 9 cm
- (3) 0.9 cm

8. The acceleration due to gravity at height h above the earth if $h \ll R$ (Radius of earth) is given by:

(1)
$$g' = g \left(1 - \frac{h^2}{2R^2} \right)$$

$$(2) g' = g \left(1 - \frac{h}{2R} \right)$$

(3)
$$g' = g \left(1 - \frac{2h^2}{R^2} \right)$$

- $(4) g' = g \left(1 \frac{2h}{R}\right)$
- 9. An emf of $0.08\,\mathrm{V}$ is induced in a metal rod of length $10\,\mathrm{cm}$ held normal to a uniform magnetic field of $0.4\,\mathrm{T}$, when it moves with a velocity of:
- $(1) 2 \,\mathrm{ms}^{-1}$
- (2) $20 \, \text{ms}^{-1}$
- $(3) 3.2 \,\mathrm{ms}^{-1}$
- (4) $0.5 \, \text{ms}^{-1}$
- 10. Work done by a Carnot engine operating between temperatures 127° C and 27° C is 2 kJ. The amount of heat transferred to the engine by the reservoir is:
- (1) 2 kJ
- (2) 4 kJ
- (3) 2.67 kJ
- (4) 8 kJ
- 11. The width of fringe is 2 mm on the screen in a double-slit experiment for the light of wavelength 400 nm. The width of the fringe for the light of wavelength 600 nm will be:
- (1) 1.33 mm
- (2) 3 mm
- (3) 2 mm
- (4) 4 mm

12. The temperature at which the kinetic energy of oxygen molecules becomes double that of its value at 27° C is:

- (1) 1227° C
- (2) 627°C
- (3) 327°C
- (4) 927°C

13. Given below are two statements: one is labeled as Assertion A and the other is labeled as Reason R.

- Assertion A: Electromagnets are made of soft iron.
- **Reason R:** Soft iron has high permeability and low retentivity.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) A is correct but R is not correct.
- (2) Both A and R are correct and R is the correct explanation of A.
- (3) Both A and R are correct but R is NOT the correct explanation of A.
- (4) A is not correct but R is correct.

14. The trajectory of a projectile, projected from the ground, is given by:

$$y = x - \frac{x^2}{20},$$

where x and y are measured in meters. The maximum height attained by the projectile will be:

- (1) 10 m
- (2) 200 m
- (3) $10\sqrt{2}$ m
- (4) 5 m

15. A bullet of mass $0.1 \, \text{kg}$ moving horizontally with speed $400 \, \text{ms}^{-1}$ hits a wooden block of mass $3.9 \, \text{kg}$ kept on a horizontal rough surface. The bullet gets embedded into the block and moves $20 \, \text{m}$ before coming to rest. The coefficient of friction between the block and the surface is ____. (Given $g = 10 \, \text{m/s}^2$):

- (1) 0.90
- (2) 0.65
- (3) 0.25
- (4) 0.50

16. For a given transistor amplifier circuit in CE configuration $V_{CC}=1$ V, $R_C=1$ k Ω , $R_B=100$ k Ω and $\beta=100$. The value of base current I_B is:

- (1) $I_B = 100 \,\mu\text{A}$
- (2) $I_B = 10 \,\mu\text{A}$
- (3) $I_B = 0.1 \,\mu\text{A}$
- (4) $I_B = 1.0 \,\mu\text{A}$

17. For particle P revolving around the center O with a radius of circular path r and angular velocity ω , as shown in the figure below, the projection of OP on the x-axis at time t is:

- $(1) x(t) = r \cos \left(\omega t + \frac{\pi}{6}\right)$
- (2) $x(t) = r \cos\left(\omega t \frac{\pi}{6}\right)$
- (3) $x(t) = r \cos(\omega t)$
- (4) $x(t) = r \sin\left(\omega t + \frac{\pi}{6}\right)$

18. A radioactive material is reduced to $\frac{1}{8}$ of its original amount in 3 days. If 8×10^{-3} kg of the material is left after 5 days, the initial amount of the material is:

(1) 64 g

(2) 40 g
(3) 32 g
(4) 256 g
19. The equivalent resistance between A and B as shown in the figure is:
$(1) 20 \mathrm{k}\Omega$
(2) $30 \mathrm{k}\Omega$
$(3) 5 k\Omega$
$(4) 10 k\Omega$
20. In the photoelectric effect:
\bullet A: The photocurrent is proportional to the intensity of the incident radiation.
ullet B: Maximum kinetic energy with which photoelectrons are emitted depends on the intensity of the incident light.
ullet $C:$ Maximum kinetic energy with which photoelectrons are emitted depends on the frequency of the incident light.
\bullet D : The emission of photoelectrons requires a minimum threshold intensity of incident radiation.
• E: Maximum kinetic energy of the photoelectrons is independent of the frequency of the incident light.
Choose the correct answer from the options given below:
(1) B and C only
(2) A and C only
(3) A and E only
(4) A and B only
21. A 600 pF capacitor is charged by 200 V supply. It is then disconnected from the
supply and is connected to another uncharged $600\mathrm{pF}$ capacitor. Electrostatic energy lost
in the process is μ J.

22. A series combination of a resistor of resistance 100Ω , inductor of inductance 1 H, and capacitor of capacitance $6.25 \mu\text{F}$ is connected to an AC source. The quality factor of the circuit will be
23. The number density of free electrons in copper is nearly $8 \times 10^{28} \text{m}^{-3}$. A copper wire has an area of cross-section $2 \times 10^{-6} \text{m}^2$ and is carrying a current of 3.2A . The drift speed of the electrons is $\times 10^{-6} \text{ms}^{-1}$.
24. A hollow spherical ball of uniform density rolls up a curved surface with an initial velocity 3 m/s (as shown in figure). The maximum height with respect to the initial position covered by it will be $cm(Take, g = 10 \text{m/s}^2)$.
25. A steel rod of length 1 m and cross-sectional area 10^{-4} m ² is heated from 0° C to 200° C without being allowed to extend or bend. The compressive tension produced in the rod is × 10^4 N. (Given Young's modulus of steel = 2×10^{11} N/m ² , coefficient of linear expansion = 10^{-5} K ⁻¹).
26. The ratio of the magnetic field at the center of a current-carrying coil of radius r to the magnetic field at a distance r from the center of the coil on its axis is $\sqrt{x}:1$. The value of x is
27. The ratio of the wavelength of spectral lines H_{α} and H_{β} in the Balmer series is $\frac{x}{20}$. The value of x is
28. Two transparent media having refractive indices 1.0 and 1.5 are separated by a spherical refracting surface of radius of curvature 30 cm. The center of curvature of the surface is towards the denser medium, and a point object is placed on the principal axis in the rarer medium at a distance of 15 cm from the pole of the surface. The distance of the image from the pole of the surface is cm.
29. A guitar string of length $90\mathrm{cm}$ vibrates with a fundamental frequency of $120\mathrm{Hz}$. The

length of the string producing a fundamental frequency of 180 Hz will be cm.		
30. A body of mass 5 kg is moving with a momentum of 10 kg \cdot ms ⁻¹ . Now a force of 2 N		

acts on the body in the direction of its motion for 5 s. The increase in the kinetic energy of the body is _____ J.