JEE Main - 8 April (Shift-1) Question Paper

Question 1. The value of $k \in \mathbb{N}$ for which the integral

 $I_n = \int_0^1 (1 - x^k)^n \, dx, \, n \in \mathbb{N}, \text{ satisfies } 147 \, I_{20} = 148 \, I_{21}$

is:

- 1. 10
 2. 8
- 3. 14
- 4. 7

Question 2. The sum of all the solutions of the equation

 $(8)^{2x} - 16 \cdot (8)^x + 48 = 0$

is:

1. $1 + \log_6(8)$

- 2. $\log_8(6)$
- 3. $1 + \log_8(6)$
- 4. $\log_8(4)$

Question 3. Let the circles $C_1 : (x - \alpha)^2 + (y - \beta)^2 = r_1^2$ and $C_2 : (x - 8)^2 + \left(y - \frac{15}{2}\right)^2 = r_2^2$

touch each other externally at the point (6,6). If the point (6,6) divides the line segment joining the centers of the circles C_1 and C_2 internally in the ratio 2:1, then:

$$(\alpha + \beta) + 4 \cdot (r_1^2 + r_2^2)$$

equals:

1. 110

2.	130
3.	125
4.	145

Question 4. Let P(x, y, z) be a point in the first octant, whose projection in the *xy*-plane is the point *Q*. Let $OP = \gamma$; the angle between OQ and the positive *x*-axis be θ ; and the angle between OP and the positive *z*-axis be ϕ , where *O* is the origin. Then the distance of *P* from the *x*-axis is:

- 1. $\gamma \sqrt{1 \sin^2 \theta \cos^2 \phi}$ 2. $\gamma \sqrt{1 + \cos^2 \phi \sin^2 \theta}$ 3. $\gamma \sqrt{1 - \sin^2 \theta \cos^2 \phi}$
- 4. $\gamma \sqrt{1 + \cos^2 \phi \sin^2 \theta}$

Question 5. The number of critical points of the function $f(x) = (x - 2)^{2/3}(2x + 1)$ is:

- 1. 2
- 2. 0
- 3. 1
- 4. 3

Question 6.Let f(x) be a positive function such that the area bounded by y = f(x), y = 0from x = 0 to x = a > 0 is:

$$e^{-a} + 4a^2 + a - 1.$$

The differential equation, whose general solution is $y = c_1 f(x) + c_2$, where c_1 and c_2 are arbitrary constants, is:

1. $(8e^{x} - 1)\frac{d^{2}y}{dx^{2}} + \frac{dy}{dx} = 0$ 2. $(8e^{x} + 1)\frac{d^{2}y}{dx^{2}} - \frac{dy}{dx} = 0$ 3. $(8e^{x} + 1)\frac{d^{2}y}{dx^{2}} + \frac{dy}{dx} = 0$ 4. $(8e^{x} - 1)\frac{d^{2}y}{dx^{2}} - \frac{dy}{dx} = 0$

Question 7. Let $f(x) = 4\cos^3(x) + 3\sqrt{3}\cos^2(x) - 10$. The number of points of local maxima of f in the interval $(0, 2\pi)$ is:

- 1. 1
- 2. 2
- 3.3
- 4.4

Question 8. Let $A = \begin{bmatrix} 2 & a & 0 \\ 1 & 3 & 1 \\ 0 & 5 & b \end{bmatrix}$. If $A^3 = 4A^2 - A - 21I$, where *I* is the identity matrix of order 3×3 , then 2a + 3b is equal to:

1. -10 2. -13 3. -9 4. -12

Question 9. If the shortest distance between the lines:

 $L_1 : \mathbf{r} = (2+\lambda)\hat{i} + (1-3\lambda)\hat{j} + (3+4\lambda)\hat{k}, \ \lambda \in \mathbb{R},$ $L_2 : \mathbf{r} = 2(1+\mu)\hat{i} + 3(1+\mu)\hat{j} + 5(1+\mu)\hat{k}, \ \mu \in \mathbb{R},$

is $\frac{m}{\sqrt{n}}$, where gcd(m, n) = 1, then the value of m + n is:

- 1. 384
- 2. 387
- 3. 377
- 4. 390

Question 10. Let the sum of two positive integers be 24. If the probability, that their product is not less than $\frac{3}{4}$ times their greatest positive product, is $\frac{m}{n}$, where gcd(m, n) = 1, then n - m equals:

1.	1. 9	
2.	11	
3.	8	

4. 10

Question 11. If $\sin x = -\frac{3}{5}$, where $\pi < x < \frac{3\pi}{2}$, then $80(\tan^2 x - \cos x)$ is equal to:

- 1.109
- 2. 108
- 3. 18
- 4. 19

Question 12. Let $I(x) = \int \frac{6}{\sin^2 x (1 - \cot x)^2} dx$. If I(0) = 3, then $I\left(\frac{\pi}{12}\right)$ is equal to:

- 1. $\sqrt{3}$
- 2. $3\sqrt{3}$
- 3. $6\sqrt{3}$
- 4. $2\sqrt{3}$

Question 13. The equations of two sides AB and AC of a triangle ABC are 4x + y = 14and 3x - 2y = 5, respectively. The point $(2, -\frac{4}{3})$ divides the third side BC internally in the ratio 2:1. The equation of the side BC is:

- 1. x 6y 10 = 02. x - 3y - 6 = 03. x + 3y + 2 = 0
- 4. x + 6y + 6 = 0

Question 14. Let [t] be the greatest integer less than or equal to t. Let A be the set of all prime factors of 2310 and

$$f: A \to \mathbb{Z}, f(x) = \left[\log_2\left(x^2 + \frac{x^3}{5}\right)\right].$$

The number of one-to-one functions from A to the range of f is:

1.	20	
2.	120	
3.	25	

4. 24

Question 15. Let z be a complex number such that |z + 2| = 1 and

$$\operatorname{Im}\left(\frac{z+1}{z+2}\right) = \frac{1}{5}.$$

Then the value of $|\mathbf{Re}(z+2)|$ is:

1. $\frac{\sqrt{6}}{5}$ 2. $1 + \frac{\sqrt{6}}{5}$ 3. $\frac{24}{5}$ 4. $\frac{2\sqrt{6}}{5}$

Question 16. If the set $R = \{(a, b) : a + 5b = 42, a, b \in \mathbb{N}\}$ has m elements and

$$\sum_{n=1}^{m} (1 - i^{n!}) = x + iy,$$

where $I = \sqrt{-1}$, then the value of m + x + y is:

1.8

- 2. 12
- 3.4
- 4. 5

Question 17. For the function $f(x) = (\cos x) - x + 1$, $x \in \mathbb{R}$, between the following two statements:

(S1) f(x) = 0 for only one value of x in $[0, \pi]$.

(S2)
$$f(x)$$
 is decreasing in $\left[0, \frac{\pi}{2}\right]$ and increasing in $\left[\frac{\pi}{2}, \pi\right]$.

The correct answer is:

- 1. Both (S1) and (S2) are correct
- 2. Only (S1) is correct
- 3. Both (S1) and (S2) are incorrect
- 4. Only (S2) is correct

Question 18. The set of all α , for which the vector

 $\vec{a} = \alpha t\hat{i} + 6\hat{j} - 3\hat{k}, \quad \vec{b} = t\hat{i} - 2\hat{j} - 2\alpha t\hat{k}$

are inclined at an obtuse angle for all $t \in \mathbb{R}$, is:

1. [0,1)

- 2. (-2, 0]
- 3. $\left(-\frac{4}{3},0\right]$
- 4. $\left(-\frac{4}{3},1\right)$

Question 19. Let y = y(x) be the solution of the differential equation:

$$(1+y^2)e^{\tan x}dx + \cos^2 x(1+e^{2\tan x})dy = 0,$$

with y(0) = 1. Then $y\left(\frac{\pi}{4}\right)$ is equal to:

1. $\frac{2}{e}$ 2. $\frac{1}{e^2}$ 3. $\frac{1}{e}$ 4. $\frac{2}{e^2}$

Question 20. Let $H: -\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ be the hyperbola, whose eccentricity is $\sqrt{3}$ and the length of the latus rectum is $4\sqrt{3}$. Suppose the point $(\alpha, 6), \alpha > 0$ lies on H. If β is the product of the focal distances of the point $(\alpha, 6)$, then $\alpha^2 + \beta$ is equal to:

1. 170

2. 171

3. 169

4. 172

Question 21. Let $A = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}$. If the sum of the diagonal elements of A^{13} is 3^n , then n is equal to:

Question 22. If the orthocentre of the triangle formed by the lines 2x + 3y - 1 = 0, x + 2y - 1 = 0, and ax + by - 1 = 0, is the centroid of another triangle whose circumcentre and orthocentre respectively are (3, 4) and (-6, -8), then the value of |a - b| is:

Question 23. Three balls are drawn at random from a bag containing 5 blue and 4 yellow balls. Let the random variables X and Y respectively denote the number of blue and yellow balls. If \overline{X} and \overline{Y} are the means of X and Y respectively, then $7\overline{X} + 4\overline{Y}$ is equal to:

Question 24. The number of 3-digit numbers, formed using the digits 2, 3, 4, 5, 7, when the repetition of digits is not allowed, and which are not divisible by 3, is equal to:

Question 25. Let the positive integers be written in the form:

 $\begin{array}{r}
1 \\
2 3 \\
4 5 6 \\
7 8 9 10 \\
\vdots
\end{array}$

If the k^{th} row contains exactly k numbers for every natural number k, then the row in which the number 5310 will be, is:

Question 26. If the range of $f(\theta) = \frac{\sin^4 \theta + 3\cos^2 \theta}{\sin^4 \theta + \cos^2 \theta}$, $\theta \in \mathbb{R}$, is $[\alpha, \beta]$, then the sum of the infinite G.P., whose first term is 64 and the common ratio is $\frac{\alpha}{\beta}$, is equal to:

Question 27. Let $\alpha = \sum_{r=0}^{n} (4r^2 + 2r + 1) \cdot {n \choose r}$ and $\beta = \left(\sum_{r=0}^{n} {n \choose r+1}\right) + \frac{1}{n+1}$. If $140 < \frac{2\alpha}{\beta} < 281$, then the value of n is:

Question 28. Let $\vec{a} = 9\hat{i} - 13\hat{j} + 25\hat{k}$, $\vec{b} = 3\hat{i} + 7\hat{j} - 13\hat{k}$, and $\vec{c} = 17\hat{i} - 2\hat{j} + \hat{k}$ be three given vectors. If \vec{r} is a vector such that $\vec{r} \times \vec{a} = (\vec{b} + \vec{c}) \times \vec{a} = 0$ and $\vec{r} \cdot (\vec{b} - \vec{c}) = 0$, then

$$\frac{|593\vec{r} + 67\vec{a}|^2}{(593)^2}$$

is equal to:

Question 29. Let the area of the region enclosed by the curve $y = \min\{\sin x, \cos x\}$ and the x-axis between $x = -\pi$ to $x = \pi$ be A. Then A^2 is equal to:

Question 30. The value of

$$\lim_{x \to 0} 2 \cdot \frac{\left(1 - \cos x \sqrt{\cos 2x} \sqrt[3]{\cos 3x} \dots \sqrt[10]{\cos 10x}\right)}{x^2}$$

is:

Question 31. Three bodies A, B, and C have equal kinetic energies, and their masses are 400 g, 1.2 kg, and 1.6 kg, respectively. The ratio of their linear momenta is:

- 1. $1: \sqrt{3}: 2$ 2. $1: \sqrt{3}: \sqrt{2}$ 3. $\sqrt{2}: \sqrt{3}: 1$
- 4. $\sqrt{3}: \sqrt{2}: 1$

Question 32. The average force exerted on a non-reflecting surface at normal incidence is 2.4×10^{-4} N. If 360 W/cm² is the light energy flux during a span of 1 hour 30 minutes, then the area of the surface is:

1. $0.2 \, \text{m}^2$

2. $0.02 \,\mathrm{m}^2$

 $3.\ 20\,m^2$

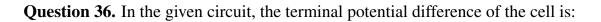
4. $0.1 \, m^2$

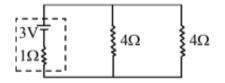
Question 33. A proton and an electron are associated with the same de-Broglie wavelength. The ratio of their kinetic energies is:

1. 1 : 1836 2. 1 : $\frac{1}{1836}$

. 1

- 3. 1 : $\frac{1}{\sqrt{1836}}$
- 4. 1 : $\sqrt{1836}$


Question 34. A mixture of one mole of a monoatomic gas and one mole of a diatomic gas (rigid) are kept at room temperature (27°C). The ratio of their specific heat capacities at constant volume is:


7:5
 3:2
 3:5
 5:3

Question 35. In an expression $a \times 10^b$:

- 1. a is the order of magnitude for $b \le 5$
- 2. b is the order of magnitude for $a \leq 5$
- 3. *b* is the order of magnitude for $5 < a \le 10$
- 4. *b* is the order of magnitude for $a \ge 5$

1. 2 V

- 2.4V
- 3. 1.5 V
- 4. 3 V

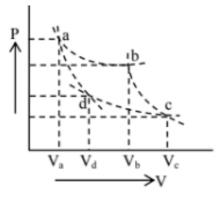
Question 37. Binding energy of a certain nucleus is 18×10^8 J. How much is the difference between total mass of all the nucleons and nuclear mass of the given nucleus:

- 1. $0.2 \, \mu g$
- 2. $20 \mu g$
- 3. 2µg
- **4.** 10 μg

Question 38.paramagnetic substances:

- 1. Align themselves along the directions of external magnetic field.
- 2. Attract strongly towards external magnetic field.
- 3. Have susceptibility little more than zero.
- 4. Move from a region of strong magnetic field to weak magnetic field.

Choose the most appropriate answer from the options given below:


Question 39. A clock has 75 cm, 60 cm long second hand and minute hand respectively. In 30 minutes duration, the tip of the second hand will travel x distance more than the tip of the minute hand. The value of x in meters is nearly (Take $\pi = 3.14$):

- 1. 139.4 m
- 2. 140.5 m
- 3. 220.0 m
- 4. 118.9 m

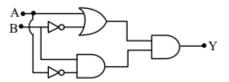
Question 40. Young's modulus is determined by the equation given by $Y = \frac{49000 M}{\ell} \frac{\text{dyne}}{\text{cm}^2}$, where M is the mass and ℓ is the extension of the wire used in the experiment. The error in Young's modulus (Y) is estimated by taking data from M- ℓ plot on graph paper. The smallest scale divisions are 5 g and 0.02 cm along the load axis and extension axis respectively. If the value of M and ℓ are 500 g and 2 cm respectively, then the percentage error of Y is:

- $1. \ 0.2\%$
- $2. \ 0.02\%$
- 3. 2%
- 4. 0.5%

Question 41. Two different adiabatic paths for the same gas intersect two isothermal curves as shown in P-V diagram. The relation between the ratio $\frac{V_a}{V_d}$ and $\frac{V_b}{V_c}$ is:

1.
$$\frac{V_a}{V_d} = \left(\frac{V_b}{V_c}\right)^{-1}$$

2. $\frac{V_a}{V_d} \neq \frac{V_b}{V_c}$
3. $\frac{V_a}{V_d} = \frac{V_b}{V_c}$
4. $\frac{V_a}{V_d} = \left(\frac{V_b}{V_c}\right)^2$


Question 42. Two planets A and B having masses m_1 and m_2 move around the sun in circular orbits of r_1 and r_2 radii respectively. If angular momentum of A is L and that of B is 3L, the ratio of time period $\frac{T_A}{T_B}$ is:

1. $\left(\frac{r_2}{r_1}\right)^{\frac{3}{2}}$ 2. $\left(\frac{r_1}{r_2}\right)^{3}$ 3. $\frac{1}{27}\left(\frac{m_2}{m_1}\right)^{3}$ 4. $27\left(\frac{m_1}{m_2}\right)^{3}$

Question 43. An LCR circuit is at resonance for a capacitor *C*, inductance *L*, and resistance *R*. Now the value of resistance is halved, keeping all other parameters the same. The current amplitude at resonance will be now:

- 1. Zero
- 2. Double
- 3. Same
- 4. Halved

Question 44. The output *Y* of the following circuit for given inputs is:

A · B · (A + B)
 A · B
 0
 Ā · B

Question 45. Two charged conducting spheres of radii *a* and *b* are connected to each other by a conducting wire. The ratio of charges of the two spheres respectively is:

1. \sqrt{ab} 2. ab3. $\frac{a}{b}$ 4. $\frac{b}{a}$

Question 46. Correct Bernoulli's equation is (symbols have their usual meaning):

- 1. $P + mgh + \frac{1}{2}mv^2 = \text{constant}$
- 2. $P + \rho gh + \frac{1}{2}\rho v^2 = \text{constant}$
- 3. $P + \rho g + \rho v^2 = \text{constant}$
- 4. $P + \frac{1}{2}gh + \frac{1}{2}\rho v^2 = \text{constant}$

Question 47. A player caught a cricket ball of mass 150 g moving at a speed of 20 m/s. If the catching process is completed in 0.1 s, the magnitude of force exerted by the ball on the hand of the player is:

- 1. 150 N
- 2.3N

3. 30 N

4. 300 N

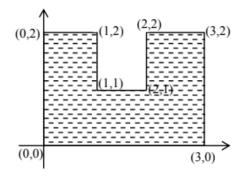
Question 48. A stationary particle breaks into two parts of masses m_A and m_B which move with velocities v_A and v_B respectively. The ratio of their kinetic energies $(K_B : K_A)$ is:

v_B: v_A
 m_B: m_A
 m_B v_B: m_A v_A
 1:1

Question 49. Critical angle of incidence for a pair of optical media is 45°. The refractive indices of first and second media are in the ratio:

1. $\sqrt{2}$: 1 2. 1: 2 3. 1: $\sqrt{2}$ 4. 2: 1

Question 50. The diameter of a sphere is measured using a vernier caliper whose 9 divisions of the main scale are equal to 10 divisions of the vernier scale. The shortest division on the main scale is equal to 1 mm. The main scale reading is 2 cm, and the second division of the vernier scale coincides with a division on the main scale. If the mass of the sphere is 8.635 g, the density of the sphere is:


1. $2.5 \,\mathrm{g/cm^3}$

2. $1.7 \,\mathrm{g/cm^3}$

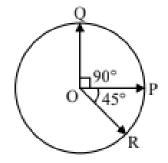
3. 2.2 g/cm^3

Question 51. A uniform thin metal plate of mass 10 kg with dimensions is shown. The ratio of x and y coordinates of the center of mass of the plate is $\frac{n}{9}$. The value of n is:

Question 52. An electron with kinetic energy 5 eV enters a region of uniform magnetic field of 3μ T perpendicular to its direction. An electric field *E* is applied perpendicular to the direction of velocity and magnetic field. The value of *E*, so that the electron moves along the same path, is _____ N/C.

Question 53. A square loop PQRS having 10 turns, area $3.6 \times 10^{-3} \text{ m}^2$, and resistance 100Ω is slowly and uniformly pulled out of a uniform magnetic field of magnitude B = 0.5 T as shown. Work done in pulling the loop out of the field in 1.0 s is _____ $\times 10^{-6} \text{ J}$.

Question 54. Resistance of a wire at 0° **C**, 100° **C**, and t° **C is found to be** 10Ω , 10.2Ω , and 10.95Ω , respectively. The temperature *t* in Kelvin is _____

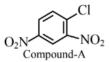


Question 55. An electric field, $\vec{E} = \frac{2\hat{i}+6\hat{j}+8\hat{k}}{\sqrt{6}}$, passes through the surface of 4 m^2 area having unit vector $\hat{n} = \frac{2\hat{i}+\hat{j}+\hat{k}}{\sqrt{6}}$. The electric flux for that surface is _____ V m.

Question 56. A liquid column of height 0.04 cm balances excess pressure of a soap bubble of certain radius. If the density of the liquid is $8 \times 10^3 \text{ kg/m}^3$ and surface tension of the soap solution is 0.28 Nm^{-1} , then the diameter of the soap bubble is ____ cm. (Take $g = 10 \text{ ms}^{-2}$).

Question 57. A closed and an open organ pipe have the same lengths. If the ratio of frequencies of their seventh overtones is $\frac{a-1}{a}$, then the value of *a* is ____

Question 58. Three vectors \overrightarrow{OP} , \overrightarrow{OQ} , \overrightarrow{OR} , each of magnitude *A*, are acting as shown in the figure. The resultant of the three vectors is $A\sqrt{x}$. The value of *x* is _____

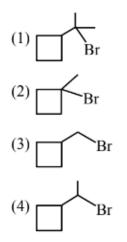


Question 59. A parallel beam of monochromatic light of wavelength 600 nm passes through a single slit of 0.4 mm width. Angular divergence corresponding to the second-order minima would be ____ ×10^{-3} rad.

Question 60. In an alpha particle scattering experiment, the distance of closest approach for the α -particle is 4.5×10^{-14} m. If the target nucleus has an atomic number 80, the maximum velocity of the α -particle is _____ $\times 10^5$ m/s approximately.

Question 61. Given below are two statements: Statement I:

IUPAC name of Compound A is 4-chloro-1, 3-dinitrobenzene. **Statement II:**

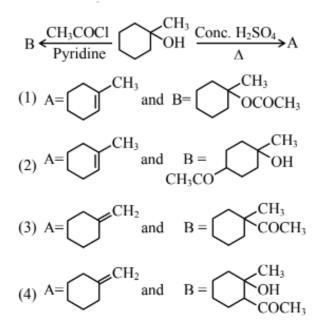


IUPAC name of Compound B is 4-ethyl-2-methylaniline.

In the light of the above statements, choose the most appropriate answer from the options given below:

- 1. Both Statement I and Statement II are correct.
- 2. Statement I is incorrect but Statement II is correct.
- 3. Statement I is correct but Statement II is incorrect.
- 4. Both Statement I and Statement II are incorrect.

Question 62. Which among the following compounds will undergo the fastest $S_N 2$ reaction?



Question 63. Combustion of glucose ($C_6H_{12}O_6$) produces CO_2 and water. The amount of oxygen (in g) required for the complete combustion of 900 g of glucose is:

- 1. 480 g
- 2. 960 g
- 3. 800 g
- 4. 32 g

Question 64. Identify the major products A and B respectively in the following set of reactions:

Question 66. Match List-I with List-II:

List-I (Name of the Test)	List-II (Reaction Sequence Involved)	
A. Borax bead test	I. $MCO_3 \rightarrow MO$, $Co(NO_3)_2 \xrightarrow{+\Delta} CoO$, MO	
B. Charcoal cavity test	II. $MCO_3 \rightarrow MCl_2 \rightarrow M^{2+}$	
C. Cobalt nitrate test	$\label{eq:masses} \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
D. Flame test	IV. $MSO_4 + Na_2CO_3 \xrightarrow{\Delta} MCO_3 \rightarrow MO \rightarrow M$	

Choose the correct answer from the options given below:

- 1. A-III, B-I, C-IV, D-II
- 2. A-III, B-II, C-IV, D-I
- 3. A-III, B-I, C-II, D-IV
- 4. A-III, B-IV, C-I, D-II

Question 67. Match List-I with List-II:

List-I (Molecule)	List-II (Shape)	
A. NH ₃	I. Square pyramidal	
B. BrF_5	II. Tetrahedral	
C. PCl_5	III. Trigonal pyramidal	
D. CH_4	IV. Trigonal bipyramidal	

Choose the correct answer from the option below:

- 1. A-IV, B-III, C-I, D-II
- 2. A-II, B-IV, C-I, D-III
- 3. A-III, B-I, C-IV, D-II
- 4. A-III, B-IV, C-I, D-II

Question 68. For the given hypothetical reactions, the equilibrium constants are as follows:

> $X \rightleftharpoons Y, \quad K_1 = 1.0$ $Y \rightleftharpoons Z, \quad K_2 = 2.0$ $Z \rightleftharpoons W, \quad K_3 = 4.0$

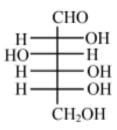
The equilibrium constant for the reaction $X \rightleftharpoons W$ is:

- 1.6.0
- 2. 12.0
- 3. 8.0
- 4. 7.0

Question 69. Thiosulphate reacts differently with iodine and bromine in the reaction given below:

$$\begin{split} 2S_2O_3^{2-} + I_2 &\to S_4O_6^{2-} + 2I^- \\ S_2O_3^{2-} + 5Br_2 + 5H_2O &\to 2SO_4^{2-} + 4Br^- + 10H^+ \end{split}$$

Which of the following statements justifies the above dual behaviour of thiosulphate?



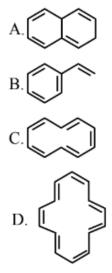
- 1. Bromine undergoes oxidation and iodine undergoes reduction by iodine in these reactions.
- 2. Thiosulphate undergoes oxidation by bromine and reduction by iodine in these reactions.
- 3. Bromine is a stronger oxidant than iodine.
- 4. Bromine is a weaker oxidant than iodine.

Question 70: An octahedral complex with the formula $CoCl_3 \cdot nNH_3$ upon reaction with excess of AgNO₃ solution gives 2 moles of AgCl. Consider the oxidation state of Co in the complex as 'x'. The value of "x + n" is _____

- 1. 3
 2. 6
- 3. 8
- 4. 5

Question 71:

The incorrect statement regarding the given structure is:


- 1. Can be oxidized to a dicarboxylic acid with Br_2 water
- 2. Despite the presence of -CHO, does not give Schiff's test
- 3. Has 4-asymmetric carbon atoms
- 4. Will coexist in equilibrium with 2 other cyclic structures

Question 72: In the given compound, the number of 2° carbon atom/s is:

- 1. Three
- 2. One
- 3. Two
- 4. Four

Question 73: Which of the following are aromatic?

- 1. B and D only
- 2. A and C only
- 3. A and B only
- 4. C and D only

Question 74: Among the following halogens F_2 , Cl_2 , Br_2 and I_2 , which can undergo disproportionation reaction?

- 1. Only I_2
- $2. \ Cl_2, Br_2 \ and \ I_2$
- 3. F_2 , Cl_2 and Br_2
- 4. F_2 and Cl_2

Question 75: Given below are two statements:

Statement I: $N(CH_3)_3$ and $P(CH_3)_3$ can act as ligands to form transition metal complexes.

Statement II: As N and P are from the same group, the nature of bonding of $N(CH_3)_3$ and $P(CH_3)_3$ is always the same with transition metals.

In the light of the above statements, choose the most appropriate answer from the options given below:

- 1. Statement I is incorrect but Statement II is correct
- 2. Both Statement I and Statement II are correct
- 3. Statement I is correct but Statement II is incorrect
- 4. Both Statement I and Statement II are incorrect

Question 76: Match List I with List II:

List I (Elements)	List II (Properties in their respective groups)	
A. Cl, S	I. Elements with highest electronegativity	
B. Ge, As	II. Elements with largest atomic size	
C. Fr, Ra	III. Elements which show properties of both metals and non-metals	
D. F, O	IV. Elements with highest negative electron gain enthalpy	

Choose the correct answer from the options given below:

- (1) A-II, B-III, C-IV, D-I
- (2) A-III, B-II, C-I, D-IV
- (3) A-IV, B-III, C-II, D-I
- (4) A-II, B-I, C-IV, D-III

Question 77: Iron (III) catalyzes the reaction between iodide and persulphate ions, in which:

- 1. Fe^{3+} oxidises the iodide ion
- 2. Fe^{3+} oxidises the persulphate ion
- 3. Fe^{2+} reduces the iodide ion
- 4. Fe^{2+} reduces the persulphate ion

Choose the most appropriate answer from the options given below:

- 1. B and C only
- 2. B only
- 3. A only
- 4. A and D only

Question 78

Match List I with List II:

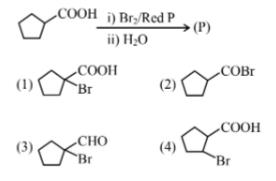
List I (Compound)	List II (Colour)
A. $\operatorname{Fe}_4[\operatorname{Fe}(\operatorname{CN})_6]_3 \cdot x\operatorname{H}_2\operatorname{O}$	I. Violet
B. $[Fe(CN)_5NOS]^4$	II. Blood Red
C. $[Fe(SCN)]^{2+}$	III. Prussian Blue
D. $(NH_4)_3PO_4 \cdot 12MoO_3$	IV. Yellow

1. A-III, B-I, C-II, D-IV

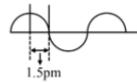
2. A-IV, B-I, C-II, D-III

3. A-II, B-III, C-IV, D-I

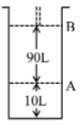
4. A-I, B-II, C-III, D-IV


Question 79: Number of complexes with even number of electrons in t_2 orbitals is:

 $[Fe(H_2O)_6]^{2+}, [Co(H_2O)_6]^{2+}, [Co(H_2O)_6]^{3+}, [Cu(H_2O)_6]^{2+}, [Cr(H_2O)_6]^{3+}, [Cr(H_2O)_6$


- 1. 1
- 2. 3
- 3. 2
- 4. 5

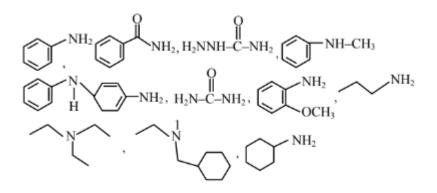
Question 80: Identify the product (P) in the following reaction:


Question 81: A hypothetical electromagnetic wave is shown below.

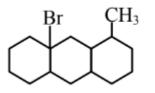
The frequency of the wave is $x \times 10^{19}$ Hz.

 $x = \dots$ (nearest integer)

Question 82: Consider the figure provided.



1 mol of an ideal gas is kept in a cylinder, fitted with a piston, at the position A, at 18°C. If the piston is moved to position B, keeping the temperature unchanged, then 'x' L atm work is done in this reversible process.


 $x = ___ L$ atm (nearest integer)

Question 83. Number of amine compounds from the following giving solids which are soluble in NaOH upon reaction with Hinsberg's reagent is ___

Question 84. The number of optical isomers in the following compound is ____

Question 85. The 'spin-only' magnetic moment value of MO_4^{2-} is ____ BM (where M is a metal having least metallic radii among Sc, Ti, V, Cr, Mn, Zn).

Question 86. Number of molecules from the following which are exceptions to the octet rule: CO₂, NO₂, H₂SO₄, BF₃, CH₄, SiF₄, ClO₂, PCl₅, BeF₂, C₂H₆, CHCl₃, CBF₄.

Question 87. If 279 g of aniline is reacted with one equivalent of benzenediazonium chloride, the maximum amount of aniline yellow formed will be ____ g (nearest integer). (Consider complete conversion).

Question 88. Consider the following reaction:

$$A+B \rightarrow C.$$

The time taken for A to become 1/4th of its initial concentration is twice the time taken to become 1/2 of the same. Also, when the change of concentration of B is plotted against time, the resulting graph gives a straight line with a negative slope and a positive intercept on the concentration axis.

The overall order of the reaction is ____

Question 89. The major product B of the following reaction has $\dots \pi$ -bonds:

$$(A) \xrightarrow{\text{CH}_2\text{CH}_3} (B)$$

Question 90. A solution containing 10 g of an electrolyte AB₂ in 100 g of water boils at 100.52° C. The degree of ionization (α) of the electrolyte is $_{--} \times 10^{-1}$ (nearest integer). Given:

- Molar mass of $AB_2 = 200$ g/mol.
- $K_b = 0.52 \,\mathrm{K} \,\mathrm{kg/mol}.$
- Boiling point of water = 100° C.

