JEE Main 2025 April 4 Shift 1 Question Paper

Time Allowed: 3 Hours | Maximum Marks: 300 | Total Questions: 75

General Instructions

Read the following instructions very carefully and strictly follow them:

- 1. Multiple choice questions (MCQs)
- 2. Questions with numerical values as answers.
- 3. There are three sections: Mathematics, Physics, Chemistry.
- 4. **Mathematics:** 25 (20+5) 10 Questions with answers as a numerical value. Out of 10 questions, 5 questions are compulsory.
- 5. **Physics:** 25 (20+5) 10 Questions with answers as a numerical value. Out of 10 questions, 5 questions are compulsory..
- 6. **Chemistry:** 25 (20+5) 10 Questions with answers as a numerical value. Out of 10 questions, 5 questions are compulsory.
- 7. Total: 75 Questions (25 questions each).
- 8. 300 Marks (100 marks for each section).
- 9. MCQs: Four marks will be awarded for each correct answer and there will be a negative marking of one mark on each wrong answer.
- 10. Questions with numerical value answers: Candidates will be given four marks for each correct answer and there will be a negative marking of 1 mark for each wrong answer.

Physics

Section - A

- 26. The mean free path and the average speed of oxygen molecules at 300 K and 1 atm are 3×10^{-7} m and 600 m/s, respectively. Find the frequency of its collisions.
- $(1) 2 \times 10^{10}/s$
- $(2) 9 \times 10^9 / s$
- $(3) 2 \times 10^9/s$
- $(4) 5 \times 10^8 / s$
- 27. A small mirror of mass m is suspended by a massless thread of length l. Then the small angle through which the thread will be deflected when a short pulse of

laser of energy E falls normal on the mirror (c = speed of light in vacuum and g = acceleration due to gravity).

- $(1) \theta = \frac{3E}{4mc\sqrt{gl}}$
- $(2) \theta = \frac{E}{\frac{E}{mc\sqrt{gl}}}$ $(3) \theta = \frac{E}{\frac{2mc\sqrt{gl}}{mc\sqrt{gl}}}$ $(4) \theta = \frac{2E}{mc\sqrt{gl}}$

28. Two liquids A and B have θ_A and θ_B as contact angles in a capillary tube. If $K = \cos \theta_{\rm A} / \cos \theta_{\rm B}$, then identify the correct statement:

- (1) K is negative, then liquid A and liquid B have convex meniscus.
- (2) K is negative, then liquid A and liquid B have concave meniscus.
- (3) K is negative, then liquid A has concave meniscus and liquid B has convex meniscus.
- (4) K is zero, then liquid A has convex meniscus and liquid B has concave meniscus.

29. Which of the following are correct expression for torque acting on a body?

- A. $\ddot{\tau} = \ddot{r} \times \ddot{L}$
- B. $\ddot{\tau} = \frac{\mathrm{d}}{\mathrm{dt}}(\ddot{\mathbf{r}} \times \ddot{\mathbf{p}})$
- C. $\ddot{\tau} = \ddot{r} \times \frac{d\dot{p}}{dt}$
- D. $\ddot{\tau} = I\dot{\alpha}$
- E. $\ddot{\tau} = \ddot{r} \times \ddot{F}$

($\ddot{r} = \text{position vector}; \dot{p} = \text{linear momentum}; \ddot{L} = \text{angular momentum}; \ddot{\alpha} = \text{angular}$ acceleration; $I = moment of inertia; \ddot{F} = force; t = time$)

Choose the correct answer from the options given below:

- (1) B, D and E Only
- (2) C and D Only
- (3) B, C, D and E Only
- (4) A, B, D and E Only

30. In a Young's double slit experiment, the slits are separated by 0.2 mm. If the slits separation is increased to 0.4 mm, the percentage change of the fringe width is:

- (1) 0%
- (2) 100%
- (3) 50%
- (4) 25%

31. An alternating current is represented by the equation, $i = 100\sqrt{2}\sin(100\pi t)$ ampere. The RMS value of current and the frequency of the given alternating current are

(1) $100\sqrt{2}$ A, 100 Hz

- (2) $\frac{100}{\sqrt{2}}$ A, 100 Hz
- (3) 100 A, 50 Hz
- (4) $50\sqrt{2}$ A, 50 Hz

32. Consider the sound wave travelling in ideal gases of He, CH_4 , and CO_2 . All the gases have the same ratio $\frac{P}{\rho}$, where P is the pressure and ρ is the density. The ratio of the speed of sound through the gases $v_{He}: v_{CH_4}: v_{CO_2}$ is given by

- (1) $\sqrt{\frac{7}{5}}:\sqrt{\frac{5}{3}}:\sqrt{\frac{4}{3}}$
- (2) $\sqrt{\frac{5}{3}}$: $\sqrt{\frac{4}{3}}$: $\sqrt{\frac{7}{5}}$
- (3) $\sqrt{\frac{5}{3}}$: $\sqrt{\frac{4}{3}}$: $\sqrt{\frac{4}{3}}$
- (4) $\sqrt{\frac{4}{3}}$: $\sqrt{\frac{5}{3}}$: $\sqrt{\frac{7}{5}}$

33. In an electromagnetic system, the quantity representing the ratio of electric flux and magnetic flux has dimension of $M^BL^OT^BA^S$, where value of 'Q' and 'R' are

- (1) (3, -5)
- (2) (-2,2)
- (3)(-2,1)
- (4) (1,-1)

34. When an object is placed 40 cm away from a spherical mirror an image of magnification $\frac{1}{2}$ is produced. To obtain an image with magnification of $\frac{1}{3}$, the object is to be moved:

- (1) 40 cm away from the mirror.
- (2) 80 cm away from the mirror.
- (3) 20 cm towards the mirror.
- (4) 20 cm away from the mirror.

35. Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R. Assertion A: In photoelectric effect, on increasing the intensity of incident light the stopping potential increases. Reason R: Increase in intensity of light increases the rate of photoelectrons emitted, provided the frequency of incident light is greater than threshold frequency.

- (1) Both ${\bf A}$ and ${\bf R}$ are true but ${\bf R}$ is NOT the correct explanation of ${\bf A}$
- (2) \mathbf{A} is false but \mathbf{R} is true
- (3) \mathbf{A} is true but \mathbf{R} is false
- (4) Both ${\bf A}$ and ${\bf R}$ are true and ${\bf R}$ is the correct explanation of ${\bf A}$

36. If \overrightarrow{L} and \overrightarrow{P} represent the angular momentum and linear momentum respectively of a particle of mass ' m ' having position vector

 $\overrightarrow{r} = a(\hat{i}\cos\omega t + \hat{j}\sin\omega t)$. The direction of force is

- (1) Opposite to the direction of \overrightarrow{r}
- (2) Opposite to the direction of \overrightarrow{L}
- (3) Opposite to the direction of \overrightarrow{P}
- (4) Opposite to the direction of $\overrightarrow{L} \times \overrightarrow{P}$

37. A body of mass m is suspended by two strings making angles θ_1 and θ_2 with the horizontal ceiling with tensions T_1 and T_2 simultaneously. T_1 and T_2 are related by $T_1 = \sqrt{3} \ T_2$. the angles θ_1 and θ_2 are

- (1) $\theta_1 = 30^{\circ} \theta_2 = 60^{\circ}$ with $T_2 = \frac{3\text{mg}}{4}$
- (2) $\theta_1 = 60^{\circ} \theta_2 = 30^{\circ} \text{ with } T_2 = \frac{\frac{4}{30}}{2}$
- (3) $\theta_1 = 45^{\circ}\theta_2 = 45^{\circ} \text{ with } T_2 = \frac{2}{4}$
- (4) $\theta_1 = 30^{\circ}\theta_2 = 60^{\circ} \text{ with } T_2 = \frac{4mg}{5}$

38. Current passing through a wire as function of time is given as

I(t) = 0.02t + 0.01 A. The charge that will flow through the wire from t = 1 s to t = 2 s is:

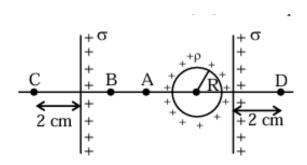
- (1) 0.06 C
- (2) 0.02 C
- (3) 0.07 C
- (4) 0.04 C

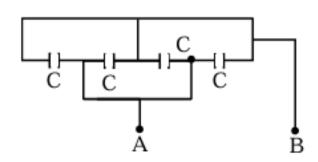
39. Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R. Assertion A: The kinetic energy needed to project a body of mass m from earth surface to infinity is $\frac{1}{2}$ mgR, where R is the radius of earth. Reason R: The maximum potential energy of a body is zero when it is projected to infinity from earth surface.

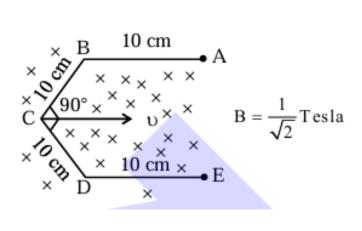
- (1) A False but **R** is true
- (2) Both A and R are true and R is the correct explanation of A
- (3) \mathbf{A} is true but \mathbf{R} is false
- (4) Both $\bf A$ and $\bf R$ are true but $\bf R$ is NOT the correct explanation of $\bf A$

40. The Boolean expression $Y = A\overline{B}C + \overline{AC}$ can be realised with which of the following gate configurations.

A. One 3-input AND gate, 3 NOT gates and one 2-input OR gate, One 2-input AND gate


B. One 3-input AND gate, 1 NOT gate, One 2-input NOR gate and one 2-input OR gate


C. 3-input OR gate, 3 NOT gates and one 2-input AND gate


Choose the correct answer from the options given below:

- (1) B, C Only
- (2) A,B Only
- (3) A, B, C Only
- (4) A, C Only
- 41. In an experiment with a closed organ pipe, it is filled with water by $(\frac{1}{5})$ th of its volume. The frequency of the fundamental note will change by
- (1) 25%
- (2) 20%
- (3) -20%
- (4) -25%
- 42. Two simple pendulums having lengths l_1 and l_2 with negligible string mass undergo angular displacements θ_1 and θ_2 , from their mean positions, respectively. If the angular accelerations of both pendulums are same, then which expression is correct?
- $(1) \ \theta_1 l_2^2 = \theta_2 l_1^2$
- $(2) \theta_1 l_1 = \theta_2 l_2$
- (3) $\theta_1 l_1^2 = \theta_2 l_2^2$
- $(4) \theta_1 l_2 = \theta_2 l_1$
- 43. Two infinite identical charged sheets and a charged spherical body of charge density ' ρ ' are arranged as shown in figure. Then the correct relation between the electrical fields at A,B,C and D points is:
- (1) $\vec{E}_A = \vec{E}_B; \vec{E}_C = \vec{E}_D$
- (2) $\vec{E}_A > \vec{E}_B; \vec{E}_C = \vec{E}_D$
- (3) $\vec{E}_C \neq \vec{E}_D; \vec{E}_A > \vec{E}_B$
- (4) $\left| \vec{E}_A \right| = \left| \vec{E}_B \right|; \vec{E}_C > \vec{E}_D$
- 44. Two small spherical balls of mass 10 g each with charges $-2\mu\text{C}$ and $2\mu\text{C}$, are attached to two ends of very light rigid rod of length 20 cm. The arrangement is now placed near an infinite nonconducting charge sheet with uniform charge density of $100\mu\text{C/m}^2$ such that length of rod makes an angle of 30° with electric field generated by charge sheet. Net torque acting on the rod is:
- (1) 112 Nm
- (2) 1.12 Nm
- (3) 2.24 Nm
- (4) 11.2 Nm

45. Considering the Bohr model of hydrogen like atoms, the ratio of the radius 5^{th} orbit of the electron in Li^{2+} and He^{+} is $ (1) \ \frac{3}{2} \\ (2) \ \frac{4}{9} \\ (3) \ \frac{9}{4} \\ (4) \ \frac{2}{3} $
SECTION-B
46. A circular ring and a solid sphere having same radius roll down on an inclined plane from rest without slipping. The ratio of their velocities when reached at the bottom of the plane is $\sqrt{\frac{x}{5}}$ where $x = \frac{1}{2}$.
47. Two slabs with square cross section of different materials $(1,2)$ with equal sides (l) and thickness d_1 and d_2 such that $d_2 = 2$ d_1 and $l > d_2$. Considering lower edges of these slabs are fixed to the floor, we apply equal shearing force on the narrow faces. The angle of deformation is $\theta_2 = 2\theta_1$. If the shear moduli of material 1 is 4×10^9 N/m ² , then shear moduli of material 2 is $x \times 10^9$ N/m ² , where value of x is
48. Distance between object and its image (magnified by $-\frac{1}{3}$) is 30 cm. The focal length of the mirror used is $\left(\frac{x}{4}\right)$ cm, where magnitude of value of x is
49. Four capacitors each of capacitance $16\mu F$ are connected as shown in the figure. The capacitance between points A and B is: (in μF).
50. Conductor wire ABCDE with each arm 10 cm in length is placed in magnetic field of $\frac{1}{\sqrt{2}}$ Tesla, perpendicular to its plane. When conductor is pulled towards right with constant velocity of $10~\rm cm/s$, induced emf between points A and E is mV.

