JEE Main 2025 Apr 4 Shift 2 Question Paper

Time Allowed : 3 Hour	Maximum Marks : 300	Total Questions :75	
------------------------------	----------------------------	----------------------------	--

General Instructions

Read the following instructions very carefully and strictly follow them:

- 1. The test is of 3 hours duration.
- 2. The question paper consists of 75 questions. The maximum marks are 300.
- 3. There are three parts in the question paper consisting of Physics, Chemistry and Mathematics having 25 questions in each part of equal weightage.
- 4. Each part (subject) has two sections.
 - (i) Section-A: This section contains 20 multiple choice questions which have only one correct answer. Each question carries 4 marks for correct answer and −1 mark for wrong answer.
 - (ii) Section-B: This section contains 5 questions. The answer to each of the questions is a numerical value. Each question carries 4 marks for correct answer and –1 mark for wrong answer. For Section-B, the answer should be rounded off to the nearest integer.
- 1. Maximum IE and minimum IE of group 13 elements are:
- (1) B, In
- (2) B, Tl
- (3) Al, In
- (4) Al, Tl
- **2.** Total number of electrons in chromium (Z = 24) for which the value of azimuthal quantum number (1) is 1 and 2.
- $(1)\ 10$
- (2) 12

- (3) 14
- (4) 16
- **3.** A disc is performing pure rolling if the speed of the top point is 8 m/s. Find the speed of point B.
- (1) 2 m/s
- (2) 4 m/s
- (3) 6 m/s
- (4) 8 m/s

4.

$$\cot^{-1}\left(\frac{7}{4}\right) + \cot^{-1}\left(\frac{19}{4}\right) + \cot^{-1}\left(\frac{39}{4}\right) + \dots \infty$$

- $(1) \cot^{-1}(2)$
- (2) $\cot^{-1}\left(\frac{1}{2}\right)$
- $(3) \cot^{-1} \left(\frac{1}{3} \right)$
- $(4) \cot^{-1}(3)$

5.

$$\sum_{k=1}^{n} \left(\alpha^k + \frac{1}{\alpha^k} \right)^2 = 20, \quad \alpha \text{ is one of the roots of } x^2 + x + 1 = 0, \text{ then } n = ?$$

- (1) 3
- (2) 4
- (3)5
- (4)6
- **6.** x is a peptide which is hydrolyzed to 2 amino acids y and z. y when reacted with HNO₂ gives lactic acid. z when heated gives a cyclic structure as below:

Cyclic structure: $CH_2C \longrightarrow CNH_2$

Cyclic structure: NHC $C \longrightarrow O$

- (1) Alanine and Lysine
- (2) Alanine and Glycine
- (3) Glycine and Alanine
- (4) Valine and Glycine

7. Let $L_1: \frac{x-1}{3} = \frac{y}{4} = \frac{z}{5}$ and $L_2: \frac{x-p}{2} = \frac{y}{3} = \frac{z}{4}$. If the shortest distance between L_1 and L_2 is $\frac{1}{\sqrt{6}}$, then the possible value of p is:

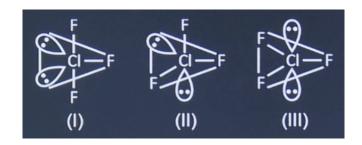
- (1) 3
- (2) 2
- (3)5
- (4)7

8.

$$\int_{0}^{10} \frac{\sqrt{1+x^2+x}}{\sqrt{1+x^2-x}} dx = \frac{1}{m} \left[\left(\sqrt{1+x^2+x} + x \right)^n \left(n\sqrt{1+x^2-x} - x \right) \right] + c$$

where c is the constant of integration and $m, n \in \mathbb{N}$, then m + n is

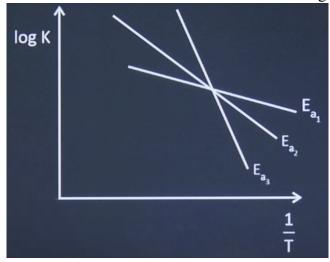
- (1) 3
- (2) 4
- (3) 5
- (4) 6


9. A particle of mass m is at a distance 3R from the center of Earth. Find the minimum kinetic energy of the particle to leave Earth's field, where R is the radius of Earth.

- $(1) \, \frac{mgR}{3}$
- $(2)\ 3mgR$
- (3) $\frac{2}{3}mgR$
- (4) $\frac{mgR}{2}$

10. Let the mean and variance of the observations 2, 3, 3, 4, 5, 7, a, b be 4 and 2, respectively. Then, the mean deviation about the mode of the observation is:

(1) 2
(2) 3
(3) 4
(4) 5
11. In a YDSE setup, the slits are separated by 1.5 mm and the distance between the slits and
the screen is 2 m. On using light of wavelength 400 nm, it is observed that 20 maxima of
double slit experiment lie inside the central maxima of single slit diffraction. The width of
each slit is m.
(1) 0.5 m
(2) 1 m
(3) 2 m
(4) 3 m
12. Maximum IE and minimum IE of group 13 elements are:
(1) B, In
(2) B, Tl
(3) Al, In
(4) Al, Tl
13. Statement-1: Alcohol is prepared from alkyl halide in the presence of aqueous KOH by elimination.
Statement-2: Alkenes are prepared from alkyl halide with alcoholic KOH by β -elimination.
Which of the following options is correct? 1. Statement-1 and Statement-2 are correct.
2. Statement-1 and Statement-2 are incorrect.
3. Statement-1 is true and Statement-2 is false.
4. Statement-1 is false and Statement-2 is true.
14. Statement-1: ClF ₃ has 3 possible structures.


Statement-2: III is the most stable structure due to least lone pair-bond pair (lp-bp) repulsion.

Which of the following options is correct?

- (1) Statement-1 is correct and Statement-2 is incorrect.
- (2) Statement-1 is incorrect and Statement-2 is correct.
- (3) Both Statement-1 and Statement-2 are correct.
- (4) Both Statement-1 and Statement-2 are incorrect.

15. Consider the following graph between Rate Constant (K) and $\frac{1}{T}$: Based on the graph, determine the correct order of activation energies E_{a1} , E_{a2} , and E_{a3} .

- (1) $E_{a1} > E_{a2} > E_{a3}$
- (2) $E_{a3} > E_{a2} > E_{a1}$
- (3) $E_{a1} > E_{a3} > E_{a2}$
- (4) $E_{a1} > E_{a2} > E_{a4}$