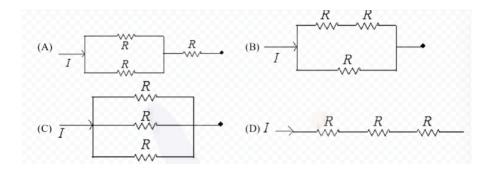
JEE Main 2023 April 13 Shift 1 Question Paper

General Instructions

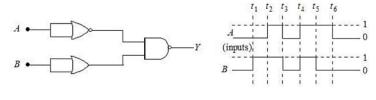
Read the following instructions very carefully and strictly follow them:

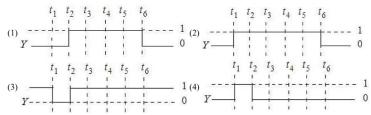

- 1. The test is of 3 hours duration.
- 2. The question paper consists of 90 questions, out of which 75 are to attempted. The maximum marks are 300.
- 3. There are three parts in the question paper consisting of Physics, Chemistry and Mathematics having 30 questions in each part of equal weightage.
- 4. Each part (subject) has two sections.
 - (i) Section-A: This section contains 20 multiple choice questions which have only one correct answer. Each question carries 4 marks for correct answer and –1 mark for wrong answer.
 - (ii) Section-B: This section contains 10 questions. In Section-B, attempt any five questions out of 10. The answer to each of the questions is a numerical value. Each question carries 4 marks for correct answer and −1 mark for wrong answer. For Section-B, the answer should be rounded off to the nearest integer

Physics

Section-A

31. Different combination of 3 resistors of equal resistance R are shown in the figures. The increasing order for power dissipation is:


(1)
$$P_C < P_B < P_A < P_D$$


(2)
$$P_C < P_D < P_A < P_B$$

(3)
$$P_B < P_C < P_D < P_A$$

$$(4)P_A < P_B < P_C < P_D$$

32. For the following circuit and given inputs A and B, choose the correct option for output Y.

The given circuit is a NAND gate, which gives an output Y based on the inputs A and B. The truth table for a NAND gate is:

$$\mathbf{Y} = \overline{A \cdot B}.$$

- 33. A bullet of 10 g leaves the barrel of the gun with a velocity of 600 m/s. If the barrel of the gun is 50 cm long and the mass of the gun is 3 kg, then the value of the impulse supplied to the gun will be:
- (1) 12 Ns
- (2) 6 Ns

- (3) 3 Ns
- (4) 36 Ns

34. Which of the following Maxwell's equation is valid for time varying conditions but not valid for static conditions:

$$(1) \oint \vec{D} \cdot d\vec{A} = Q$$

(2)
$$\oint \vec{E} \cdot d\vec{l} = -\frac{\partial \Phi_B}{\partial t}$$

$$(3) \oint \vec{E} \cdot d\vec{l} = 0$$

$$(4) \oint \vec{B} \cdot d\vec{l} = \mu_0 I$$

35. Match List – I with List – II

55. Match List 1 with List 11		
	List - I (Layer of atmosphere)	List - II (Approximate height over Earth's surface)
	(A) F1 - Layer	(I) 10 km
	(B) D - Layer	(II) 170 - 190 km
	(C) Troposphere	(III) 100 km
	(D) E - Layer	(IV) 65 - 75 km

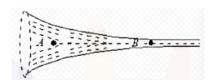
Choose the correct answer from the options given below:

- (1) A II, B I, C IV, D III
- (2) A II, B IV, C III, D I
- $(3)\ A-II,\ B-IV,\ C-I,\ D-III$
- $(4)\;A-III,\,B-IV,\,C-I,\,D-II$

36. The rms speed of oxygen molecule in a vessel at particular temperature is

 $\left(1+\frac{5}{x}\right)^{\frac{1}{2}} \nu$, where ν is the average speed of the molecule. The value of x will be: (Take $\pi=\frac{22}{7}$)

- (1)28
- (2)27
- (3) 8
- (4) 4


37. The ratio of powers of two motors is

$$\frac{3\sqrt{x}}{\sqrt{x+1}},$$

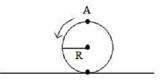
that are capable of raising 300 kg of water in 5 minutes and 50 kg of water in 2 minutes respectively from a well 100 m deep. The value of x will be:

- (1) 16
- (2) 2
- (3)4
- (4) 2.4
- 38. Two trains 'A' and 'B' of length l and l are travelling into a tunnel of length L in parallel tracks from opposite directions with velocities 108 km/h and 72 km/h, respectively. If train 'A' takes 35 s less time than train 'B' to cross the tunnel, then length L of the tunnel is: (Given $l = 60 \, \text{m}$)
- (1) 2700 m
- (2) 1800 m
- (3) 1200 m
- (4) 900 m
- 39. Two bodies are having kinetic energies in the ratio 16: 9. If they have the same linear momentum, the ratio of their masses respectively is:
- (1) 16:9
- (2)4:3
- (3) 9: 16
- $(4) \ 3:4$
- 40. The figure shows a liquid of given density flowing steadily in a horizontal tube of varying cross-section. Cross-sectional areas at A is 1.5 cm², and at B is 25 mm², if the speed of liquid at B is 60 cm/s then $(P_A P_B)$ is: (Given P_A and P_B are liquid pressures at A and B points, and density $\rho = 1000 \, \text{kg/m}^3$. A and B are on the axis of the tube.)

- (1) 175 Pa
- (2) 36 Pa
- (3) 27 Pa
- (4) 135 Pa

41.

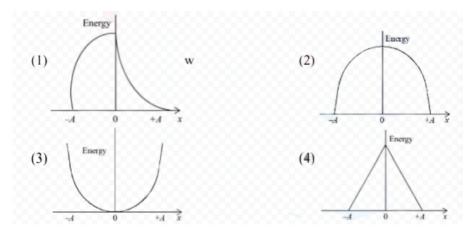
$$^{238}_{92}A \rightarrow ^{234}_{90}B + ^{4}_{2}D + Q$$


In the given nuclear reaction, the approximate amount of energy released will be:

[Given, mass of ${}^{238}_{92}A = 238.05079 \times 931.5\,\mathrm{MeV/c}^2$,

mass of
$$^{234}_{90}B = 234.04363 \times 931.5 \,\text{MeV/c}^2$$
,

mass of
$${}^4_2D = 4.00260 \times 931.5\,\mathrm{MeV/c^2}]$$


- (1) 4.25 MeV
- (2) 5.9 MeV
- (3) 3.82 MeV
- (4) 2.12 MeV
- 42. A disc is rolling without slipping on a surface. The radius of the disc is R. At t=0, the top most point on the disc is A as shown in the figure. When the disc completes half of its rotation, the displacement of point A from its initial position is:

- (1) $2R\sqrt{1+4\pi^2}$
- (2) $R\sqrt{\pi^2 + 4}$
- (3) 2R
- (4) $R\sqrt{\pi^2+1}$

43. Which graph represents the difference between total energy and potential energy of a particle executing SHM vs its distance from the mean position?

44. Two charges each of magnitude 0.01 C and separated by a distance of 0.4 mm constitute an electric dipole. If the dipole is placed in an uniform electric field \vec{E} of 10 dyne/C making 30° angle with \vec{E} , the magnitude of torque acting on dipole is:

- (1) $1.5 \times 10^{-9} \,\mathrm{Nm}$
- (2) $2.0 \times 10^{-10} \,\mathrm{Nm}$
- (3) $1.0 \times 10^{-8} \,\mathrm{Nm}$
- (4) $4.0 \times 10^{-10} \,\mathrm{Nm}$

45. Under isothermal condition, the pressure of a gas is given by $P=aV^{-3}$, where a is a constant and V is the volume of the gas. The bulk modulus at constant temperature is equal to:

- $(1) \frac{P}{2}$
- **(2)** 2*P*
- (3) *P*
- **(4)** 3*P*

46. A planet having mass $9M_e$ and radius $4R_e$, where M_e and R_e are mass and radius of Earth respectively, has escape velocity in km/s given by: (Given escape velocity on earth $V_e = 11.2 \times 10^3 \,\text{m/s}$)

(1) 11.2

- (2)67.2
- (3) 33.6
- (4) 16.8

47. A body of mass (5 ± 0.5) kg is moving with a velocity of (20 ± 0.4) m/s. Its kinetic energy will be:

- (1) (1000 ± 140) J
- (2) (500 ± 140) J
- (3) (500 ± 0.14) J
- (4) (1000 ± 0.14) J

48. The difference between threshold wavelengths for two metal surfaces A and B having work functions $\phi_A=9\,\mathrm{eV}$ and $\phi_B=4.5\,\mathrm{eV}$ in nm is:

Given, hc = 1242 eV nm

- (1)276
- (2)264
- (3)540
- (4) 138

49. The source of time varying magnetic field may be:

- (A) A permanent magnet
- (B) An electric field changing linearly with time
- (C) Direct current
- (D) A decelerating charge particle
- (E) An antenna fed with a digital signal

Choose the correct answer from the options given below:

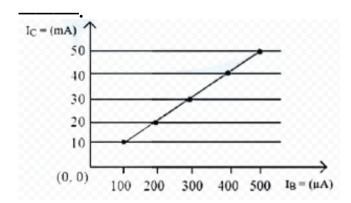
- (1) (B) and (D) only
- (2) (C) and (E) only
- (3) (D) only
- (4) (A) only

50. A vessel of depth d is half filled with oil of refractive index n_1 and the other half is filled with water of refractive index n_2 . The apparent depth of this vessel when viewed from above will be:

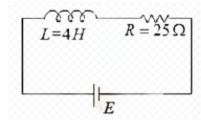
(1)
$$\frac{d(n_1+n_2)}{2n_1n_2}$$

(2)
$$\frac{dn_1n_2}{(n_1+n_2)}$$

$$(3) \, \frac{dn_1n_2}{2(n_1+n_2)}$$


$$(4) \; \frac{2d(n_1+n_2)}{n_1n_2}$$

Section-B


- 51. When a resistance of 5 Ω is shunted with a moving coil galvanometer, it shows a full scale deflection for a current of 250 mA, however, when 1050 Ω resistance is connected with it in series, it gives full scale deflection for 25 volt. The resistance of the galvanometer is — Ω .
- 52. The radius of the 2nd orbit of He⁺ of Bohr's model is r_1 and that of the fourth orbit of Be³⁺ is represented as r_2 . Now the ratio $\frac{r_2}{r_1}$ is x:1. The value of x———
- 53. A solid sphere is rolling on a horizontal plane without slipping. If the ratio of angular momentum about axis of rotation of the sphere to the total energy of the moving sphere is $\frac{\pi}{22}$, the value of its angular speed will be rad/s
- 54. A fish rising vertically upward with a uniform velocity of 8 m/s observes that a bird is diving vertically downward towards the fish with the velocity of 12 m/s. If the refractive index of water is $\frac{4}{3}$, then the actual velocity of the diving bird to pick the fish will be ——m/s.
- 55. The elastic potential energy stored in a steel wire of length 20 m stretched through 2 cm is 80 J. The cross sectional area of the wire is —— mm². (Given, $y = 2.0 \times 10^{1} 1Nm^{-2}$)

56. From the given transfer characteristic of a transistor in CE configuration, the value of power gain of this configuration is 10^x , for $R_B = 10 \, \mathrm{k}\Omega$, $R_C = 1 \, \mathrm{k}\Omega$. The value of x is

57. In the given figure, an inductor and a resistor are connected in series with a battery of emf E volt. $\frac{E^2}{2b}$ represents the maximum rate at which the energy is stored in the magnetic field (inductor). The numerical value of $\frac{b}{a}$ will be ———

58. A potential V_0 is applied across a uniform wire of resistance R. The power dissipation is P_1 . The wire is then cut into two equal halves and a potential V_0 is applied across the length of each half. The total power dissipation across two wires is P_2 . The ratio $P_2: P_1$ is $\sqrt{x}: 1$. The value of x is ———

59. At a given point of time the value of displacement of a simple harmonic oscillator is given as $y = A\cos(30^\circ)$. If amplitude is 40 cm and kinetic energy at that time is 200 J, the value of force constant is $1.0 \times 10^x \, \mathrm{Nm}^{-1}$. The value of x is ———

60. A thin infinite sheet charge and an infinite line charge of respective charge densities $+\sigma$ and $+\lambda$ are placed parallel at a 5 m distance from each other. Points 'P' and 'Q' are at $\frac{3}{\pi}$ m and $\frac{4}{\pi}$ m perpendicular distances from the line charge towards the sheet charge, respectively. 'E_P' and 'E_Q' are the magnitudes of resultant electric field intensities at

