JEE Main 2025 April 8th Shift 2 Chemistry Question Paper

Time Allowed: 3 Hours | Maximum Marks: 300 | Total Questions: 75

General Instructions

Read the following instructions very carefully and strictly follow them:

- 1. Multiple choice questions (MCQs)
- 2. Questions with numerical values as answers.
- 3. There are three sections: Mathematics, Physics, Chemistry.
- 4. **Mathematics:** 25 (20+5) 10 Questions with answers as a numerical value. Out of 10 questions, 5 questions are compulsory.
- 5. **Physics:** 25 (20+5) 10 Questions with answers as a numerical value. Out of 10 questions, 5 questions are compulsory..
- 6. **Chemistry:** 25 (20+5) 10 Questions with answers as a numerical value. Out of 10 questions, 5 questions are compulsory.
- 7. Total: 75 Questions (25 questions each).
- 8. 300 Marks (100 marks for each section).
- 9. MCQs: Four marks will be awarded for each correct answer and there will be a negative marking of one mark on each wrong answer.
- 10. Questions with numerical value answers: Candidates will be given four marks for each correct answer and there will be a negative marking of 1 mark for each wrong answer.

Chemistry

Section - A

51. Given below are two statements:

Statement I: H_2Se is more acidic than H_2Te

Statement II: H_2Se has higher bond enthalpy for dissociation than H_2Te

In the light of the above statements, choose the correct answer from the options given below.

- (1)Statement I is false but Statement II is true
- (2)Statement I is true but Statement II is false
- (3)Both Statement I and Statement II are false
- (4)Both Statement I and Statement II are true

52. The correct decreasing order of spin only magnetic moment values (BM) of Cu^+ , Cu^{2+} , Cr^{2+} and Cr^{3+} ions is:

- (1) $Cu^{+} > Cu^{2+} > Cr^{3+} > Cr^{2+}$
- (2) $Cr^{3+} > Cr^{2+} > Cu^{+} > Cu^{2+}$
- (3) $Cu^{2+} > Cu^{+} > Cr^{2+} > Cr^{3+}$
- $(4) \operatorname{Cr}^{2+} > \operatorname{Cr}^{3+} > \operatorname{Cu}^{2+} > \operatorname{Cu}^{+}$

53. Match the LIST-I with LIST-II

LIST-I (Reagent)	LIST-II (Functional Group detected)
A. Sodium bicarbonate solution	I. double bond/unsaturation
B. Neutral ferric chloride	II. carboxylic acid
C. Ceric ammonium nitrate	III. phenolic -OH
D. Alkaline KMnO ₄	IV. alcoholic -OH

Choose the correct answer from the options given below:

- (1)A-III, B-III, C-I, D-IV
- (2) A-III, B-II, C-IV, D-I
- (3) A-II, B-III, C-IV, D-I
- (4) A-II, B-IV, C-III, D-I

54. Given below are two statements:

Statement I: A homoleptic octahedral complex, formed using monodentate ligands, will not show stereoisomerism

Statement II: cis- and trans-platin are heteroleptic complexes of Pd.

In the light of the above statements, choose the correct answer from the options given below

- (1)Both Statement I and Statement II are false
- (2) Statement I is true but Statement II is false
- (3)Statement I is false but Statement II is true
- (4)Both Statement I and Statement II are true

55. What is the correct IUPAC name of the following compound?

- (1) 4-Ethyl-1-hydroxycyclopent-2-ene
- (2) 1-Ethyl-3-hydroxycyclopent-2-ene
- (3) 1-Ethylcyclopent-2-en-3-ol
- (4) 4-Ethylcyclopent-2-en-1-ol

56.

$$A \xrightarrow{(i) \text{NaOH}} B \xrightarrow{(i) \text{EtOH}} C$$

A shows positive Lassaigne's test for N and its molar mass is 12(1)

B gives effervescence with aqueous NaHCO(3)

C gives fruity smell.

Identify A, B, and C from the following.

1.
$$A = \bigcirc$$
 $A = \bigcirc$
 $A = \bigcirc$

57. On combustion 0.210 g of an organic compound containing C, H and O gave 0.127 g $\rm H_2O$ and 0.307 g $\rm CO_2$. The percentages of hydrogen and oxygen in the given organic compound respectively are:

- (1)6.72, 39.87
- (2)6.72, 53.41
- (3)7.55, 43.85
- (4)53.41, 39.6

58. HA $(aq) \rightleftharpoons H^{+}(aq) + A^{-}(aq)$

The freezing point depression of a 0.1 m aqueous solution of a monobasic weak acid HA is 0.20 °C. The dissociation constant for the acid is Given: $K_f(H_2O) = 1.8 \,\mathrm{K \ kg \ mol^{-1}}$, molality molarity

- $(1)1.1 \times 10^{-2}$
- $(2)1.38 \times 10^{-3}$
- $(3)1.90 \times 10^{-3}$
- $(4)1.89 \times 10^{-1}$

59. Match the LIST-I with LIST-II

LIST-I	LIST-II
A. Carbocation	I. Species that can supply a pair of electrons.
B. C-Free radical	II. Species that can receive a pair of electrons.
C. Nucleophile	III. sp^2 hybridized carbon with empty p-orbital.
D. Electrophile	IV. sp^2/sp^3 hybridized carbon with one unpaired electron.

Choose the correct answer from the options given below:

- (1)A-III, B-III, C-I, D-IV
- (2) A-III, B-IV, C-II, D-I
- (3) A-IV, B-II, C-III, D-I
- (4) A-III, B-IV, C-I, D-II

60.

(i) KOH (alc.) 1,2-dibromocyclooctane P (ii) NaNH₂ major product (iii) Hg2+ / H+ (iv) Zn-Hg / H+

'P' is

61. In a first order decomposition reaction, the time taken for the decomposition of reactant to one fourth and one eighth of its initial concentration are t_1 and t_2 (s), respectively. The ratio t_1/t_2 will be:

- $\begin{array}{c}
 (1)\frac{4}{3} \\
 (2)\frac{3}{4} \\
 (3)\frac{2}{3} \\
 (4)\frac{3}{2}
 \end{array}$

62. Match the LIST-I with LIST-II

LIST-I (Complex/Species)	LIST-II (Shape & magnetic moment)
A. $[Ni(CO)_4]$	I. Tetrahedral, 2.8 BM
B. $[Ni(CN)_4]^{2-}$	II. Square planar, 0 BM
C. $[NiCl_4]^{2-}$	III. Tetrahedral, 0 BM
D. $[MnBr_4]^{2-}$	IV. Tetrahedral, 5.9 BM

Choose the correct answer from the options given below:

- (1)A-I, B-II, C-III, D-IV
- (2) A-III, B-II, C-I, D-IV
- (3) A-III, B-IV, C-II, D-I
- (4) A-IV, B-I, C-III, D-II

63. Which one of the following reactions will not lead to the desired ether formation in major proportion?

(iso-Bu = isobutyl, sec-Bu = sec-butyl, nPr = n-propyl, tBu = tert-butyl, Et = ethyl)

1.
$$\stackrel{+}{Na}\stackrel{-}{O}$$
 \longrightarrow $+ n - Pr Br \longrightarrow n - Pr \longrightarrow O$

- ^{2.} ${}^{t}BuO \overset{+}{Na} + EtBr \longrightarrow {}^{t}Bu O Et$
- ^{3.} iso-Bu $\overset{-}{\text{N}}$ + sec BuBr \longrightarrow sec-Bu O iso Bu

4.
$$O^{-}$$
 Na + CH₃ Br \longrightarrow O - CH₃

64. Correct statements for an element with atomic number 9 are

- A. There can be 5 electrons for which $m_s = +\frac{1}{2}$ and 4 electrons for which $m_s = -\frac{1}{2}$
- B. There is only one electron in p_z orbital.
- C. The last electron goes to orbital with n=2 and l=1.
- D. The sum of angular nodes of all the atomic orbitals is 1.

Choose the correct answer from the options given below:

- (1) A and B Only
- (2)A, C and D Only
- (3) C and D Only
- (4) A and C Only

65. The number of species from the following that are involved in sp^3d^2 hybridization is

$$[Co(NH_3)_6]^{3+}, SF_6, [CrF_6]^{3-}, [CoF_6]^{3-}, [Mn(CN)_6]^{3-}$$

and

$$[MnCl_6]^{3-}$$

- (1)3
- (2)4
- (3)6
- (4)5

66. When undergoes intramolecular aldol condensation, the major product formed is:

67. Choose the correct option for structures of A and B, respectively:

68. Choose the correct set of reagents for the following conversion:

- (1) Cl_2/Fe ; $Br_2/anhy.AlCl_3$; aq. KOH
- (2) Br_2/Fe ; Cl_2, Δ ; alc. KOH
- (3) Cl₂/anhy.AlCl₃; Br₂/Fe; alc. KOH
- (4) $Br_2/anhy.AlCl_3; Cl_2, \Delta; aq. KOH$

69. Which of the following binary mixture does not show the behavior of minimum boiling azeotropes?

- $(1)CS_2 + CH_3COCH_3$
- $(2)H_2O + CH_3COC_2H_5$
- $(3)C_6H_5OH + C_6H_5NH_2$
- $(4)CH_3OH + CHCl_3$

70. The atomic number of the element from the following with lowest 1^{st} ionization enthalpy is:

- (1)87
- (2)19

(4)35

Section - B

71. 20 mL of sodium iodide solution gave $4.74~\mathrm{g}$ silver iodide when treated with excess of silver nitrate solution. The molarity of the sodium iodide solution is ____ M. (Nearest Integer value)

(Given:
$$Na = 23$$
, $I = 127$, $Ag = 108$, $N = 14$, $O = 16 \text{ g mol}^{-1}$)

72. The equilibrium constant for decomposition of H_2O (g)

$$H_2O(g) \rightleftharpoons H_2(g) + \frac{1}{2}O_2(g) \quad (\Delta G^{\circ} = 92.34 \,\text{kJ mol}^{-1})$$

is 8.0×10^{-3} at 2300 K and total pressure at equilibrium is 1 bar. Under this condition, the degree of dissociation (α) of water is ____ $\times 10^{-2}$ (nearest integer value).

[Assume α is negligible with respect to 1]

73. Resonance in X_2Y can be represented as

$$\ominus \hspace{0.2cm} \ominus \hspace{0.2cm} Z = \ddot{Y} \longleftrightarrow : X \equiv X - \ddot{Y} :$$

The enthalpy of formation of X_2Y is 80 kJ mol^{-1} , and the magnitude of resonance energy of X_2Y is:

- 74. The energy of an electron in first Bohr orbit of H-atom is -13.6 eV. The magnitude of energy value of electron in the first excited state of Be³⁺ is ____ eV (nearest integer value)
- 75. Consider the following half cell reaction

$$Cr_2O_7^{2-}(aq) + 6e^- + 14H^+(aq) \longrightarrow 2Cr^{3+}(aq) + 7H_2O(1)$$

The reaction was conducted with the ratio of

$$\frac{[Cr^{3+}]^2}{[Cr_2O_7^{2-}]} = 10^{-6}$$

The pH value at which the EMF of the half cell will become zero is ____ (nearest integer value)

[Given: standard half cell reduction potential

$$E_{Cr_2O_7^{2-},H^+/Cr^{3+}}^{\circ} = 1.33V, \quad \frac{2.303RT}{F} = 0.059V$$