

Limit, Continuity, And Differentiability JEE Main PYQ - 1

Total Time: 25 Minute

Total Marks: 40

Instructions

Instructions

- 1. Test will auto submit when the Time is up.
- 2. The Test comprises of multiple choice questions (MCQ) with one or more correct answers.
- 3. The clock in the top right corner will display the remaining time available for you to complete the examination.

Navigating & Answering a Question

- 1. The answer will be saved automatically upon clicking on an option amongst the given choices of answer.
- 2. To deselect your chosen answer, click on the clear response button.
- 3. The marking scheme will be displayed for each question on the top right corner of the test window.

Limit, Continuity, And Differentiability

$$\lim_{n \to \infty} \frac{3}{n} \left\{ 1 + \sqrt{\frac{n}{n+3}} + \sqrt{\frac{n}{n+6}} + \sqrt{\frac{n}{n+9}} + \dots + \sqrt{\frac{n}{n+3(n-1)}} \right\}$$
(+4, -1)

- **a.** does not exist
- **b.** is 1
- **c.** is 2
- **d.** is 3

4. If $\int_{\frac{1}{3}}^{3} |\log_e x| dx = \frac{m}{n} \log e\left(\frac{n^2}{v}\right)$, where m and n are coprime natural numbers, then (+4, -1) $m^2 + n^2 - 5$ is equal to _____

5. Let
$$a_n = \int_{-1}^{n} \left(1 + \frac{x}{2} + \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{x^{n-1}}{n} \right) dx$$
 for $n \in N$ Then the sum of all the (+4, -1)
elements of the set $\{n \in N : a_n \in (2, 30)\}$ is _____ (1)
6. $\lim_{t \to 0} \left(1^{\frac{1}{\sin^2 t}} + 2^{\frac{1}{\sin^2 t}} + \dots + n^{\frac{1}{\sin^2 t}} \right)^{\sin^2 t}$ is equal to (+4, -1)
a. n^2
b. $n^2 + n$

- **C.** n
- **d.** $\frac{n(n+1)}{2}$

9.
$$\lim_{x o 0} \left(rac{3x^2+2}{7x^2+2}
ight)^{rac{1}{x^2}}$$
 is equal to :

(+4, -1)

- **b.** $\frac{1}{e^2}$ **c.** $\frac{1}{e}$ **d.** e^2
- 10. $\lim_{x\to 0} \frac{\sin^2 x}{\sqrt{2} \sqrt{1 + \cos x}}$ equals: a. $2\sqrt{2}$ b. $4\sqrt{2}$ c. $\sqrt{2}$ d. 4

Answers

1. Answer: c

Explanation:

$$\lim_{n \to \infty} \frac{3}{n} \sum_{r=0}^{n-1} \sqrt{\frac{1}{1+3\left(\frac{r}{n}\right)}} = 3 \int_{0}^{1} \frac{dx}{\sqrt{1+3x}} = 2 \left[\sqrt{1+3x}\right]_{0}^{1} = 2$$

Concepts:

1. Limits:

A function's <u>limit</u> is a number that a function reaches when its independent variable comes to a certain value. The value (say a) to which the function f(x) approaches casually as the independent variable x approaches casually a given value "A" denoted as f(x) = A.

If $\lim_{x\to a^-} f(x)$ is the expected value of f when x = a, given the values of 'f' near x to the left of 'a'. This value is also called the left-hand limit of 'f' at a.

If $\lim_{x\to a^+} f(x)$ is the expected value of f when x = a, given the values of 'f' near x to the right of 'a'. This value is also called the right-hand limit of f(x) at a.

If the right-hand and left-hand limits concur, then it is referred to as a common value as the limit of f(x) at x = a and denote it by $\lim_{x\to a} f(x)$.

2. Answer: c

Explanation:

Explanation:

Given:The expression $\lim_{0} \frac{\int_{0}^{2} \sec^{2}}{\sin}$ We have to evaluate the given expression.Here, we'll use fundamental integrals of trigonometric functions.

 $\lim_{0} \frac{\int_{0}^{2} \sec^{2}}{\sin^{2}} \quad [\int \sec^{2} = \tan] \lim_{0} \frac{[\tan]^{2}}{\sin^{2}} = \lim_{0} \frac{\tan^{2}}{\sin^{2}}$

= $\lim_{0} \frac{\frac{\tan^2}{2}}{\frac{\pi}{2}}$ [Dividing by ² in Numerator & denominator] $\frac{\lim_{0} \frac{(\tan^2)}{2}}{\frac{\sin^2}{2}} = \frac{1}{1} = 1$ [Using limit of trigonometric functions]Hence, the correct option is (C).

3. Answer: a

Explanation:

$$egin{aligned} \lim_{n o \infty} (rac{1}{1+n} + \ldots + rac{1}{n+n}) &= \lim_{n o \infty} \sum_{r=1}^n rac{1}{n+r} \ &= \lim_{n o \infty} \sum_{r=1}^n rac{1}{n} (rac{1}{1+rac{r}{n}}) \ &= \int_0^1 rac{1}{1+x} dx = [\ell ln(1+x]_0^1 = \ell n2 \end{aligned}$$

Concepts:

1. Limits:

A function's <u>limit</u> is a number that a function reaches when its independent variable comes to a certain value. The value (say a) to which the function f(x) approaches casually as the independent variable x approaches casually a given value "A" denoted as f(x) = A.

If $\lim_{x\to a^-} f(x)$ is the expected value of f when x = a, given the values of 'f' near x to the left of 'a'. This value is also called the left-hand limit of 'f' at a.

If $\lim_{x\to a^+} f(x)$ is the expected value of f when x = a, given the values of 'f' near x to the right of 'a'. This value is also called the right-hand limit of f(x) at a.

If the right-hand and left-hand limits concur, then it is referred to as a common value as the limit of f(x) at x = a and denote it by $\lim_{x\to a} f(x)$.

4. Answer: 20 - 20

Explanation:

The correct answer is 20. $\int_{\frac{1}{3}}^{3} |\ell nx| dx = \int_{\frac{1}{3}}^{1} (-\ell nx) dx + \int_{1}^{3} (\ell nx) dx$ $= -[x\ell nx - x]_{1/3}^{1} + [x\ell nx - x]_{1}^{3}$ $= -[-1 - (\frac{1}{3}\ell n\frac{1}{3} - \frac{1}{3})] + [3\ell n3 - 3 - (-1)]$ $= [-\frac{2}{3} - \frac{1}{3}\ell n\frac{1}{3}] + [3\ell n3 - 2]$ $= -\frac{4}{3} + \frac{8}{3}\ell n3$ $= \frac{4}{3}(2\ell n3 - 1)$ $= \frac{4}{3}(\ell n\frac{9}{e})$ $\therefore m = 4, n = 3$ Now, $m^{2} + n^{2} - 5 = 16 + 9 - 5 = 20$

Concepts:

1. Limits:

A function's <u>limit</u> is a number that a function reaches when its independent variable comes to a certain value. The value (say a) to which the function f(x) approaches casually as the independent variable x approaches casually a given value "A" denoted as f(x) = A.

If $\lim_{x\to a^-} f(x)$ is the expected value of f when x = a, given the values of 'f' near x to the left of 'a'. This value is also called the left-hand limit of 'f' at a.

If $\lim_{x\to a^+} f(x)$ is the expected value of f when x = a, given the values of 'f' near x to the right of 'a'. This value is also called the right-hand limit of f(x) at a.

If the right-hand and left-hand limits concur, then it is referred to as a common value as the limit of f(x) at x = a and denote it by $\lim_{x\to a} f(x)$.

5. Answer: 5 - 5

Explanation:

The correct answer is 5.

$$\begin{aligned} \int_{-1}^{n} (1 + \frac{x}{2} + \frac{x^{2}}{3} + \dots + \frac{x^{n-1}}{n}) dx \\ [x + \frac{x^{2}}{2} + \frac{x^{3}}{3^{2}} + \dots + \frac{x^{n}}{n^{2}}]^{n} \\ (n + \frac{n^{2}}{2^{2}} + \frac{n^{3}}{3^{2}} + \dots + - \frac{n^{n}}{n^{2}}) \\ -(-1 + \frac{1}{2^{2}} - \frac{1}{3^{2}} + \frac{1}{4^{2}} + \dots + \frac{(-1)^{n}}{n^{2}}) \\ a_{n} = (n + 1) + \frac{1}{2^{2}}(n^{2} - 1) + \frac{1}{3^{2}}(n^{3} + 1) + \dots + \frac{1}{n^{2}}(n^{n} - (-1)^{n}) \\ If n = 1 \Rightarrow a_{n} = 2 \not(2, 30) \\ \text{If } n = 2 \\ \Rightarrow a_{n} = (2 + 1) + \frac{1}{2^{2}}(2^{2} - 1) = 3 + \frac{3}{4} < 30 \end{aligned}$$

$$\begin{aligned} \text{If } n = 3 \\ \Rightarrow a_{n} = (3 + 1) + \frac{1}{4}(8) + \frac{1}{9}(28) = 11 + \frac{28}{9} < 30 \\ \text{If } n = 4 \\ \Rightarrow a_{n} = (4 + 1) + \frac{1}{4}(16 - 1) + \frac{1}{9}(64 + 1) + \frac{1}{16} \\ = 5 + \frac{15}{16} + \frac{65}{16} + \frac{255}{16} > 30 \end{aligned}$$

Test $\{2,3\}$ sum of elements 5

Concepts:

1. Limits:

A function's <u>limit</u> is a number that a function reaches when its independent variable comes to a certain value. The value (say a) to which the function f(x) approaches casually as the independent variable x approaches casually a given value "A" denoted as f(x) = A.

If $\lim_{x\to a^-} f(x)$ is the expected value of f when x = a, given the values of 'f' near x to the left of 'a'. This value is also called the left-hand limit of 'f' at a.

If $\lim_{x\to a^+} f(x)$ is the expected value of f when x = a, given the values of 'f' near x to the right of 'a'. This value is also called the right-hand limit of f(x) at a.

If the right-hand and left-hand limits concur, then it is referred to as a common value as the limit of f(x) at x = a and denote it by $\lim_{x\to a} f(x)$.

6. Answer: c

Explanation:

$$\lim_{t \to 0} \left(1^{\operatorname{cosec}^{2}t} + 2^{\operatorname{cosec}^{2}t} + \dots + n^{\operatorname{cosec}^{2}t} \right)^{\sin^{2}t}$$

$$= \lim_{t \to 0} n \left(\left(\frac{1}{n} \right)^{\operatorname{cosec}^{2}t} + \left(\frac{2}{n} \right)^{\operatorname{cosec}^{2}t} + \dots + 1 \right)^{\sin^{2}t}$$

$$= n$$
Concepts:

1. Limits:

A function's <u>limit</u> is a number that a function reaches when its independent variable comes to a certain value. The value (say a) to which the function f(x) approaches casually as the independent variable x approaches casually a given value "A" denoted as f(x) = A.

If $\lim_{x\to a^-} f(x)$ is the expected value of f when x = a, given the values of 'f' near x to the left of 'a'. This value is also called the left-hand limit of 'f' at a.

If $\lim_{x\to a^+} f(x)$ is the expected value of f when x = a, given the values of 'f' near x to the right of 'a'. This value is also called the right-hand limit of f(x) at a.

If the right-hand and left-hand limits concur, then it is referred to as a common value as the limit of f(x) at x = a and denote it by $\lim_{x\to a} f(x)$.

7. Answer: c

Explanation:

Concepts:

1. Limits And Derivatives:

Mathematically, a limit is explained as a value that a function approaches as the input, and it produces some value. Limits are essential in calculus and mathematical analysis and are used to define derivatives, integrals, and continuity.

collegedunia

A derivative is referred to the instantaneous rate of change of a quantity with response to the other. It helps to look into the moment-by-moment nature of an amount. The derivative of a function is shown in the below-given formula.

$$\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}$$

$$\begin{aligned} 1.\frac{d}{dx} & [p(x) + q(x)] = \frac{d}{dx} & (p(x)) + \frac{d}{dx} & (q(x)) \\ 2.\frac{d}{dx} & [p(x) - q(x)] = \frac{d}{dx} & (p(x)) - \frac{d}{dx} & (q(x)) \\ 3.\frac{d}{dx} & [p(x) \times q(x)] = \frac{d}{dx} & [p(x)] & q(x) + p(x) & \frac{d}{dx} & [q(x)] \\ 4.\frac{d}{dx} & \left[\frac{p(x)}{q(x)}\right] = \frac{\frac{d}{dx} & [p(x)] & q(x) - p(x) & \frac{d}{dx} & [q(x)] \\ & (q(x))^2 \end{aligned}$$

8. Answer: a

Explanation:

Concepts:

1. Limits And Derivatives:

Mathematically, a limit is explained as a value that a function approaches as the input, and it produces some value. Limits are essential in calculus and mathematical analysis and are used to define derivatives, integrals, and continuity.

$$\lim_{n o c} f(n) = L$$

Limits Formula:

collegedunia

A derivative is referred to the instantaneous rate of change of a quantity with response to the other. It helps to look into the moment-by-moment nature of an amount. The derivative of a function is shown in the below-given formula.

$$\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}$$

$$\begin{aligned} 1.\frac{d}{dx} \ [p(x) + q(x)] &= \frac{d}{dx} \ (p(x)) + \frac{d}{dx} \ (q(x)) \\ 2.\frac{d}{dx} \ [p(x) - q(x)] &= \frac{d}{dx} \ (p(x)) - \frac{d}{dx} \ (q(x)) \\ 3.\frac{d}{dx} \ [p(x) \times q(x)] &= \frac{d}{dx} \ [p(x)] \ q(x) + p(x) \ \frac{d}{dx} \ [q(x)] \\ 4.\frac{d}{dx} \left[\frac{p(x)}{q(x)} \right] &= \frac{\frac{d}{dx} \ [p(x)] \ q(x) - p(x) \ \frac{d}{dx} \ [q(x)]}{(q(x))^2} \end{aligned}$$

9. Answer: b

Explanation:

Required limit =
$$e^{x \to 0} \left(\frac{3x^2 + 2}{7x^2 + 2} - 1 \right) \frac{1}{x^2}$$

= $e^{x \to 0} \left(\frac{-4}{7x^2 + 2} \right)_{=\frac{1}{e^2}}$
The correct option is (B): $\frac{1}{e^2}$.

Concepts:

1. Limits And Derivatives:

Mathematically, a limit is explained as a value that a function approaches as the input, and it produces some value. Limits are essential in calculus and mathematical analysis and are used to define derivatives, integrals, and continuity.

$$\lim_{n o c} f(n) = L$$

Limits Formula:

collegedunia

A derivative is referred to the instantaneous rate of change of a quantity with response to the other. It helps to look into the moment-by-moment nature of an amount. The derivative of a function is shown in the below-given formula.

$$\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}$$

$$\begin{aligned} 1.\frac{d}{dx} & [p(x) + q(x)] = \frac{d}{dx} & (p(x)) + \frac{d}{dx} & (q(x)) \\ 2.\frac{d}{dx} & [p(x) - q(x)] = \frac{d}{dx} & (p(x)) - \frac{d}{dx} & (q(x)) \\ 3.\frac{d}{dx} & [p(x) \times q(x)] = \frac{d}{dx} & [p(x)] & q(x) + p(x) & \frac{d}{dx} & [q(x)] \\ 4.\frac{d}{dx} & \left[\frac{p(x)}{q(x)}\right] = \frac{\frac{d}{dx} & [p(x)] & q(x) - p(x) & \frac{d}{dx} & [q(x)] \\ & (q(x))^2 \end{aligned}$$

10. Answer: b

Explanation:

$$\lim_{x \to 0} \frac{\left(\frac{\sin^2 x}{x^2}\right) \left(\sqrt{2} + \sqrt{1 + \cos x}\right)}{\left(\frac{1 - \cos x}{x^2}\right)} = \frac{(1)^2 \cdot (2\sqrt{2})}{\frac{1}{2}} = 4\sqrt{2}$$

Concepts:

1. Limits And Derivatives:

Mathematically, a limit is explained as a value that a function approaches as the input, and it produces some value. Limits are essential in calculus and mathematical analysis and are used to define derivatives, integrals, and continuity.

$$\lim_{n \to c} f(n) = L$$

Limits Formula:

A derivative is referred to the instantaneous rate of change of a quantity with response to the other. It helps to look into the moment-by-moment nature of an amount. The derivative of a function is shown in the below-given formula.

$$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$$

$$1 \cdot \frac{d}{dx} [p(x) + q(x)] = \frac{d}{dx} (p(x)) + \frac{d}{dx} (q(x))$$

$$2 \cdot \frac{d}{dx} [p(x) - q(x)] = \frac{d}{dx} (p(x)) - \frac{d}{dx} (q(x))$$

$$3 \cdot \frac{d}{dx} [p(x) \times q(x)] = \frac{d}{dx} [p(x)] q(x) + p(x) \frac{d}{dx} [q(x)]$$

$$4 \cdot \frac{d}{dx} \left[\frac{p(x)}{q(x)}\right] = \frac{\frac{d}{dx} [p(x)] q(x) - p(x) \frac{d}{dx} [q(x)]}{(g(x))^2}$$

