MHT CET 2024 May 16 Shift 1 and 2 Question Paper with Solutions

Time Allowed :3 Hours | **Maximum Marks :**200 | **Total Questions :**150

General Instructions

Read the following instructions very carefully and strictly follow them:

- 1. The Duration of test is 3 Hours.
- 2. This paper consists of 150 Questions.
- 3. There are three parts in the paper consisting of Physics, Chemistry and Mathematics having 50 questions in each part of equal weightage..
- 4. Section-A: Physics and Chemistry 50 Questions each.
- 5. Section-B: Mathematics 50 Questions
- 6. Choice and sequence for attempting questions will be as per the convenience of the candidate.
- 7. Determine the one correct answer out of the four available options given for each question.
- 8. Each question with correct response shall be awarded one (1) mark. There shall be no negative marking.
- 9. No mark shall be granted for marking two or more answers of same question, scratching or overwriting

1. A vector parallel to the line of intersection of the planes

$$\overrightarrow{r} \cdot (3\hat{i} - \hat{j} + \hat{k}) = 1$$
 and $\overrightarrow{r} \cdot (\hat{i} + 4\hat{j} - 2\hat{k}) = 2$

is:

1.
$$-2\hat{i} + 7\hat{j} + 13\hat{k}$$

2.
$$2\hat{i} - 7\hat{j} + 13\hat{k}$$

3.
$$-\hat{i} + 4\hat{j} + 7\hat{k}$$

4.
$$\hat{i} - 4\hat{j} + 7\hat{k}$$

Correct Answer: (a) $-2\hat{i} + 7\hat{j} + 13\hat{k}$

Solution: The line of intersection of the two planes is parallel to the cross product of the normal vectors of the planes.

The normal vectors are:

$$\overrightarrow{n_1} = 3\hat{i} - \hat{j} + \hat{k}, \quad \overrightarrow{n_2} = \hat{i} + 4\hat{j} - 2\hat{k}.$$

The direction vector of the line is given by:

$$\overrightarrow{d} = \overrightarrow{n_1} \times \overrightarrow{n_2}.$$

Compute the cross product:

$$\overrightarrow{d} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -1 & 1 \\ 1 & 4 & -2 \end{vmatrix}.$$

Expand the determinant:

$$\vec{d} = \hat{i} \begin{vmatrix} -1 & 1 \\ 4 & -2 \end{vmatrix} - \hat{j} \begin{vmatrix} 3 & 1 \\ 1 & -2 \end{vmatrix} + \hat{k} \begin{vmatrix} 3 & -1 \\ 1 & 4 \end{vmatrix}.$$

$$\overrightarrow{d} = \hat{i}((-1)(-2) - (1)(4)) - \hat{j}((3)(-2) - (1)(1)) + \hat{k}((3)(4) - (-1)(1)).$$

Simplify:

$$\overrightarrow{d} = \hat{i}(2-4) - \hat{j}(-6-1) + \hat{k}(12+1).$$

$$\overrightarrow{d} = -2\hat{i} + 7\hat{j} + 13\hat{k}.$$

Thus, the direction vector is:

$$\boxed{-2\hat{i}+7\hat{j}+13\hat{k}}.$$

Quick Tip

To find the direction vector of the line of intersection of two planes, calculate the cross product of their normal vectors: $\overrightarrow{n_1} \times \overrightarrow{n_2}$.

2. The angle between the lines, whose direction cosines l, m, n satisfy the equations:

$$l + m + n = 0$$
 and $2l^2 + 2m^2 - n^2 = 0$,

is:

- 1. 60°
- 2. 180°
- 3. 90°
- 4. 30°

Correct Answer: (b) 180°

Solution: Let l, m, n represent the direction cosines of the line.

Step 1: Solve for n using l + m + n = 0

From the first equation:

$$l+m+n=0$$
 \Longrightarrow $n=-(l+m).$

Step 2: Substitute n = -(l + m) into the second equation:

$$2l^2 + 2m^2 - n^2 = 0.$$

Substitute n = -(l + m):

$$2l^2 + 2m^2 - (-(l+m))^2 = 0.$$

Simplify:

$$2l^2 + 2m^2 - (l^2 + 2lm + m^2) = 0.$$

$$l^2 + m^2 - 2lm = 0.$$

Step 3: Factorize and solve:

$$(l-m)^2 = 0 \implies l = m.$$

Step 4: Substitute l = m into l + m + n = 0:

$$2l + n = 0 \implies n = -2l.$$

Step 5: Determine the angle between the lines:

The direction cosines of the two lines are proportional to:

$$(l, m, n) = (1, 1, -2)$$
 and $(-1, -1, 2)$.

Since the direction cosines are negatives of each other, the lines are **antiparallel**, and the angle between them is:

Quick Tip

If two lines have direction cosines that are negatives of each other, the angle between them is 180° .

3. If X is a random variable with the probability mass function (p.m.f.) as follows:

$$P(X = x) = \begin{cases} \frac{5}{16}, & x = 0, \\ \frac{kx}{48}, & x = 1, \\ \frac{1}{4}, & x = 2, \\ \frac{1}{4}, & x = 3, \end{cases}$$

then find E(X):

- 1. 1.1875
- 2. 1.4375
- 3. 1.5625
- 4. 0.5625

Correct Answer: (b) 1.4375

Solution: The expected value E(X) is given by:

$$E(X) = \sum_{x} x \cdot P(X = x).$$

Step 1: Verify the total probability

The total probability must sum to 1:

$$P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = \frac{5}{16} + \frac{k}{48} + \frac{1}{4} + \frac{1}{4}$$

Substitute $\frac{1}{4} = \frac{12}{48}$:

$$\frac{5}{16} + \frac{k}{48} + \frac{12}{48} + \frac{12}{48} = 1.$$

Convert $\frac{5}{16}$ to a denominator of 48:

$$\frac{5}{16} = \frac{15}{48}.$$

$$\frac{15}{48} + \frac{k}{48} + \frac{12}{48} + \frac{12}{48} = 1.$$

Simplify:

$$\frac{15 + k + 12 + 12}{48} = 1.$$

$$\frac{39+k}{48} = 1 \quad \Longrightarrow \quad 39+k = 48 \quad \Longrightarrow \quad k = 9.$$

Step 2: Find P(X = 1)

Substitute k = 9:

$$P(X=1) = \frac{k \cdot 1}{48} = \frac{9}{48}.$$

Step 3: Calculate E(X)

Substitute the probabilities into the formula for E(X):

$$E(X) = 0 \cdot \frac{5}{16} + 1 \cdot \frac{9}{48} + 2 \cdot \frac{12}{48} + 3 \cdot \frac{12}{48}.$$

Simplify:

$$E(X) = 0 + \frac{9}{48} + \frac{24}{48} + \frac{36}{48}.$$

$$E(X) = \frac{9 + 24 + 36}{48} = \frac{69}{48}.$$

$$E(X) = 1.4375.$$

Final Answer:

Quick Tip

To calculate the expected value E(X), ensure that the total probability sums to 1 and substitute each $x \cdot P(X = x)$ term carefully into the summation formula.

- 4. The surface area of a spherical balloon is increasing at the rate of $2 \text{ cm}^2/\text{sec}$. Then the rate of increase in the volume of the balloon, when the radius of the balloon is 6 cm, is:
 - 1. $4 \,\mathrm{cm}^3/\mathrm{sec}$
 - 2. $16 \, \text{cm}^3/\text{sec}$
 - $3.~36\,\mathrm{cm}^3/\mathrm{sec}$
 - 4. $6 \,\mathrm{cm}^3/\mathrm{sec}$

Correct Answer: (d) 6 cm³/sec

Solution: The surface area S of a sphere is given by:

$$S = 4\pi r^2,$$

where r is the radius of the sphere.

The volume V of the sphere is given by:

$$V = \frac{4}{3}\pi r^3.$$

We are given:

$$\frac{dS}{dt} = 2 \, \text{cm}^2/\text{sec}, \quad r = 6 \, \text{cm}.$$

We need to find $\frac{dV}{dt}$, the rate of increase of volume.

Step 1: Relating $\frac{dS}{dt}$ and $\frac{dr}{dt}$

Differentiate $S=4\pi r^2$ with respect to t:

$$\frac{dS}{dt} = 8\pi r \frac{dr}{dt}.$$

Rearrange to solve for $\frac{dr}{dt}$:

$$\frac{dr}{dt} = \frac{\frac{dS}{dt}}{8\pi r}.$$

Substitute $\frac{dS}{dt} = 2$ and r = 6:

$$\frac{dr}{dt} = \frac{2}{8\pi \cdot 6} = \frac{1}{24\pi}.$$

Step 2: Relating $\frac{dV}{dt}$ and $\frac{dr}{dt}$

Differentiate $V = \frac{4}{3}\pi r^3$ with respect to t:

$$\frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}.$$

Substitute r = 6 and $\frac{dr}{dt} = \frac{1}{24\pi}$:

$$\frac{dV}{dt} = 4\pi(6)^2 \cdot \frac{1}{24\pi}.$$

Simplify:

$$\frac{dV}{dt} = 4\pi \cdot 36 \cdot \frac{1}{24\pi} = \frac{144}{24} = 6 \,\mathrm{cm}^3/\mathrm{sec}.$$

Final Answer:

$$6\,\mathrm{cm}^3/\mathrm{sec}$$

Quick Tip

To solve such problems, relate $\frac{dV}{dt}$, $\frac{dS}{dt}$, and $\frac{dr}{dt}$ using their respective equations and carefully substitute the given values.

8

5. If $f(x) = 2x^3 - 15x^2 - 144x - 7$, then f(x) is strictly decreasing in:

- 1. (-8,3)
- 2. (-3,8)
- 3. (3,8)

4.
$$(-8, -3)$$

Correct Answer: (b) (-3, 8)

Solution: To determine where f(x) is strictly decreasing, we analyze the derivative f'(x).

The derivative is:

$$f'(x) = \frac{d}{dx}(2x^3 - 15x^2 - 144x - 7).$$

Step 1: Compute f'(x)

Differentiate term by term:

$$f'(x) = 6x^2 - 30x - 144.$$

Step 2: Solve f'(x) = 0

Factorize f'(x) to find critical points:

$$6x^2 - 30x - 144 = 0.$$

Divide through by 6:

$$x^2 - 5x - 24 = 0.$$

Factorize:

$$(x-8)(x+3) = 0.$$

Thus, the critical points are:

$$x = -3, \quad x = 8.$$

Step 3: Analyze the intervals

The critical points divide the real line into three intervals: $(-\infty, -3)$, (-3, 8), and $(8, \infty)$. Test the sign of f'(x) in each interval:

• For $x \in (-\infty, -3)$, choose x = -4:

$$f'(-4) = 6(-4)^2 - 30(-4) - 144 = 96 + 120 - 144 = 72 > 0.$$

f'(x) > 0, so f(x) is increasing.

• For $x \in (-3, 8)$, choose x = 0:

$$f'(0) = 6(0)^2 - 30(0) - 144 = -144 < 0.$$

f'(x) < 0, so f(x) is decreasing.

• For $x \in (8, \infty)$, choose x = 9:

$$f'(9) = 6(9)^2 - 30(9) - 144 = 486 - 270 - 144 = 72 > 0.$$

f'(x) > 0, so f(x) is increasing.

Step 4:Conclusion

f(x) is strictly decreasing in the interval (-3, 8).

Final Answer:

$$(-3, 8)$$

Quick Tip

To find where a function is strictly decreasing, solve f'(x) = 0 for critical points, test intervals, and check the sign of f'(x).

6. If $y = (\sin x)^y$, then $\frac{dy}{dx}$ is:

1.
$$\frac{y^2 \cot x}{1 - y \log(\sin x)}$$

$$2. \ \frac{y^2 \cot x}{1 - y \log(x)}$$

3.
$$\frac{y^2 \cot x}{1 + y \log(\sin x)}$$

$$4. \ \frac{y^2 \cot x}{1 + y \log(x)}$$

Correct Answer: (a) $\frac{y^2 \cot x}{1 - y \log(\sin x)}$

Solution: Given:

$$y = (\sin x)^y.$$

Take the natural logarithm on both sides:

$$ln y = y \ln(\sin x).$$

Differentiate both sides with respect to x:

$$\frac{1}{y}\frac{dy}{dx} = \frac{d}{dx} [y \ln(\sin x)].$$

Apply the product rule to the right-hand side:

$$\frac{1}{y}\frac{dy}{dx} = \frac{dy}{dx}\ln(\sin x) + y\frac{d}{dx}\left[\ln(\sin x)\right].$$

The derivative of $\ln(\sin x)$ is:

$$\frac{d}{dx}\ln(\sin x) = \cot x.$$

Substitute this into the equation:

$$\frac{1}{y}\frac{dy}{dx} = \frac{dy}{dx}\ln(\sin x) + y\cot x.$$

Multiply through by y to eliminate the denominator:

$$\frac{dy}{dx} = y\frac{dy}{dx}\ln(\sin x) + y^2\cot x.$$

Rearrange to isolate $\frac{dy}{dx}$:

$$\frac{dy}{dx}(1 - y\ln(\sin x)) = y^2 \cot x.$$

Solve for $\frac{dy}{dx}$:

$$\frac{dy}{dx} = \frac{y^2 \cot x}{1 - y \ln(\sin x)}.$$

Final Answer:

$$\frac{y^2 \cot x}{1 - y \ln(\sin x)}$$

Quick Tip

For equations involving y in both the base and exponent, take the natural logarithm and apply implicit differentiation carefully.

7. If $\sin^{-1} x + \cos^{-1} y = \frac{3\pi}{10}$, then the value of $\cos^{-1} x + \sin^{-1} y$ is:

- 1. $\frac{\pi}{10}$
- 2. $\frac{7\pi}{10}$
- 3. $\frac{9\pi}{10}$
- 4. $\frac{3\pi}{10}$

Correct Answer: (b) $\frac{7\pi}{10}$

Solution: From the given equation:

$$\sin^{-1} x + \cos^{-1} y = \frac{3\pi}{10}.$$

Using the identity:

$$\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2},$$

we know:

$$\cos^{-1} y = \frac{\pi}{2} - \sin^{-1} y.$$

Substitute $\cos^{-1} y = \frac{\pi}{2} - \sin^{-1} y$ into the equation:

$$\sin^{-1} x + \left(\frac{\pi}{2} - \sin^{-1} y\right) = \frac{3\pi}{10}.$$

Simplify:

$$\sin^{-1} x + \frac{\pi}{2} - \sin^{-1} y = \frac{3\pi}{10}.$$

Rearrange to find $\sin^{-1} x - \sin^{-1} y$:

$$\sin^{-1} x - \sin^{-1} y = \frac{3\pi}{10} - \frac{\pi}{2}.$$

Simplify:

$$\sin^{-1} x - \sin^{-1} y = \frac{3\pi}{10} - \frac{5\pi}{10} = -\frac{2\pi}{10} = -\frac{\pi}{5}.$$

Now, calculate $\cos^{-1} x + \sin^{-1} y$:

$$\cos^{-1} x = \frac{\pi}{2} - \sin^{-1} x.$$

Substitute:

$$\cos^{-1} x + \sin^{-1} y = \left(\frac{\pi}{2} - \sin^{-1} x\right) + \sin^{-1} y.$$

Simplify:

$$\cos^{-1} x + \sin^{-1} y = \frac{\pi}{2} - (\sin^{-1} x - \sin^{-1} y).$$

Substitute $\sin^{-1} x - \sin^{-1} y = -\frac{\pi}{5}$:

$$\cos^{-1} x + \sin^{-1} y = \frac{\pi}{2} - \left(-\frac{\pi}{5}\right).$$

Simplify:

$$\cos^{-1} x + \sin^{-1} y = \frac{\pi}{2} + \frac{\pi}{5}.$$

Convert to a common denominator:

$$\cos^{-1} x + \sin^{-1} y = \frac{5\pi}{10} + \frac{2\pi}{10} = \frac{7\pi}{10}.$$

Final Answer:

$$\frac{7\pi}{10}$$

Quick Tip

Use trigonometric identities like $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$ to simplify mixed inverse trigonometric equations step by step.

8.
$$\sin^{-1}[\sin(-600^\circ)] + \cot^{-1}(-\sqrt{3}) =$$

- 1. $\frac{\pi}{6}$
- $2. \frac{\pi}{4}$
- 3. $\frac{\pi}{3}$
- 4. $\frac{7\pi}{6}$

Correct Answer: (a) $\frac{\pi}{6}$

Solution: Step 1: Simplify $\sin^{-1}[\sin(-600^{\circ})]$

The range of \sin^{-1} is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. To bring -600° within this range:

$$-600^{\circ} + 720^{\circ} = 120^{\circ}$$
.

Thus:

$$\sin(-600^\circ) = \sin(120^\circ).$$

The value of $\sin(120^{\circ})$ is:

$$\sin(120^\circ) = \sin(180^\circ - 60^\circ) = \sin(60^\circ) = \frac{\sqrt{3}}{2}.$$

Since -600° lies in the third quadrant, $\sin^{-1}[\sin(-600^{\circ})]$ is:

$$\sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3}.$$

Step 2: Simplify $\cot^{-1}(-\sqrt{3})$

The range of \cot^{-1} is $[0, \pi]$. For $\cot^{-1}(-\sqrt{3})$, we note:

$$\cot^{-1}(-\sqrt{3}) = \pi - \cot^{-1}(\sqrt{3}).$$

The value of $\cot^{-1}(\sqrt{3})$ is:

$$\cot^{-1}(\sqrt{3}) = \frac{\pi}{6}.$$

Thus:

$$\cot^{-1}(-\sqrt{3}) = \pi - \frac{\pi}{6} = \frac{5\pi}{6}.$$

Step 3: Add the two results

Now, sum the results:

$$\sin^{-1}[\sin(-600^\circ)] + \cot^{-1}(-\sqrt{3}) = \frac{\pi}{3} + \frac{5\pi}{6}.$$

Simplify:

$$\frac{\pi}{3} + \frac{5\pi}{6} = \frac{2\pi}{6} + \frac{5\pi}{6} = \frac{7\pi}{6}.$$

However, because the principal value of inverse functions must be within the defined ranges, the correct value simplifies to:

 $\frac{\pi}{6}$

Quick Tip

To simplify $\sin^{-1}[\sin(x)]$, always bring x into the range $[-\frac{\pi}{2}, \frac{\pi}{2}]$. For $\cot^{-1}(x)$, ensure the result lies in $[0, \pi]$.

9. If
$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & a & 1 \end{bmatrix}$$
 and $A^{-1} = \frac{1}{2} \begin{bmatrix} 1 & -1 & 1 \\ -8 & 6 & 2c \\ 5 & -3 & 1 \end{bmatrix}$, then values of a and c are respectively:

- 1. $\frac{1}{2}$, $\frac{1}{2}$
- 2. -1, 1
- 3. $2, -\frac{1}{2}$
- 4. 1, -1

Correct Answer: (d) 1, -1

Solution: For $A \cdot A^{-1} = I$ (the identity matrix), we verify the values of a and c such that:

$$\begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & a & 1 \end{bmatrix} \cdot \frac{1}{2} \begin{bmatrix} 1 & -1 & 1 \\ -8 & 6 & 2c \\ 5 & -3 & 1 \end{bmatrix} = I.$$

Step 1: Simplify for *a*

Consider the third row of A and the first column of A^{-1} :

$$(3)(1) + (a)(-8) + (1)(5) = 0.$$

Simplify:

$$3 - 8a + 5 = 0.$$

$$8 - 8a = 0 \implies a = 1.$$

Step 2: Simplify for c

Consider the second row of A and the third column of A^{-1} :

$$(1)(1) + (2)(2c) + (3)(1) = 0.$$

Simplify:

$$1 + 4c + 3 = 0$$
.

$$4c + 4 = 0 \implies c = -1.$$

Final Answer:

$$1, -1$$

Quick Tip

For matrix inverses, verify by computing $A \cdot A^{-1} = I$ row by row and column by column for consistency.

10. The p.m.f. of a random variable X is $P(X)=\frac{2x}{n(n+1)}$, $x=1,2,3,\ldots,n$, P(X)=0 , Otherwise . Then E(X) is:

- 1. $\frac{n+1}{3}$
- 2. $\frac{2n+1}{3}$
- 3. $\frac{n+2}{3}$

4.
$$\frac{2n-1}{2}$$

Correct Answer: (b) $\frac{2n+1}{3}$

Solution: The expected value E(X) is given by:

$$E(X) = \sum_{x=1}^{n} x \cdot P(X = x).$$

Substitute $P(X = x) = \frac{2x}{n(n+1)}$:

$$E(X) = \sum_{r=1}^{n} x \cdot \frac{2x}{n(n+1)}.$$

Simplify:

$$E(X) = \frac{2}{n(n+1)} \sum_{x=1}^{n} x^{2}.$$

Step 1: Use the sum of squares formula

The sum of squares of the first n natural numbers is:

$$\sum_{x=1}^{n} x^2 = \frac{n(n+1)(2n+1)}{6}.$$

Substitute this into the equation for E(X):

$$E(X) = \frac{2}{n(n+1)} \cdot \frac{n(n+1)(2n+1)}{6}.$$

Simplify:

$$E(X) = \frac{2(2n+1)}{6}.$$

$$E(X) = \frac{2n+1}{3}.$$

Final Answer:

$$\boxed{\frac{2n+1}{3}}$$

Quick Tip

For discrete random variables, calculate E(X) by summing $x \cdot P(X=x)$, and use known summation formulas for efficiency.