BOARD QUESTION PAPER: MARCH 2017

te	:													
	All qu	uestio	ons are comp	ulsory.										
	Answ	Answers of both the sections should be written in same answer book.												
C	Draw well labelled diagrams and write balanced equations wherever necessary.													
	Figures to the right indicate full marks. Use of logarithmic table is allowed. Every new question must be started on a new page.													
	Every	new	question mu	st be star	rted on a new j	page.								
	SECTION – II													
5.	Selec sub-c			e most	appropriate	answer	from the given alternatives for each	[7]						
i. When primary amine reacts with CHCl ₃ in alcoholic KOH, the product is														
		(A)	aldehyde			(B)	alcohol							
		(C)	cyanide			(D)	an isocyanide							
	ii.	CH ₃ -	$-CH_2-Br$	Alcoholic KOH Δ	\rightarrow B $\stackrel{\text{HBr}}{\longrightarrow}$ C	Na/ether	→ D, the compound D is							
		(A)	ethane			(B)	propane							
		(C)	n-butane			(D)	n-pentane							
	iii.	Cisp	latin compou	ınd is use	ed in the treatn	nent of	Aleni Revi							
		(A)	malaria			(B)	cancer							
		(C)	AIDS		India's La	(D)	yellow fever							
	iv.	A ga	s when passe	ed throug	h K ₂ Cr ₂ O ₇ and	dil. H ₂ SO	O ₄ solution turns it green, the gas is							
		(A)	CO_2			(B)	NH_3							
		(C)	SO_2			(D)	Cl_2							
	v.	The	alcohol used	in therm	ometers is	•								
		(A)	methanol			(B)	ethanol							
		(C)	propanol			(D)	butanol							
	vi.	Whi	ch of the foll	owing vi	tamins is the v	itamin of	alicyclic series?							
		(A)	Vitamin C			(B)	Vitamin K							
		(C)	Vitamin B			(D)	Vitamin A							
	• •				41 C' 4 · 1									
	V11.	())		owing is	me first oxida		ct of secondary alcohol?							
		(A)	Alkene			(B)	Aldehyde							
		(C)	Ketone			(D)	Carboxylic acid							

Q.6. Answer any SIX of the following:

[12]

- How is diethyl ether prepared by continuous etherification process?
- ii. Write a note on Hoffmann bromamide degradation.
- iii. How is ethanoic acid prepared from dry ice?
- Write the molecular and structural formula of BHA and BHT. 1V.
- Explain the preparation of glucose from cane sugar. V.
- Write the factors which are related to the colour of transition metal ions. vi.
- vii. Explain the following terms:
 - Homopolymers

Elastomers b.

viii. Define racemic mixture.

 CH_3

Give IUPAC name of $CH_3 - CH_2 - CH - CHO$.

Q.7. Answer any THREE of the following:

[9]

What is 'effective atomic number' (EAN)?

Calculate the effective atomic number of the central metal atom in the following compounds:

 $K_4Fe(CN)_6$ a. Fe (Z = 26)

 $Cr(CO)_6$ b.

Cr (Z = 24)

- ii. Write the different oxidation states of iron. Why +2 oxidation state of manganese is more stable? (Z of Mn = 25).
- iii. Write a note on 'aldol condensation'.
- What are 'nucleic acids'? 1V.

c. Diethylamine Define complex lipids. Mention any 'two' functions of lipids.

Q.8. Answer any ONE of the following:

What is the action of mixture of NaNO₂ and dil. HCl on:

Ethylamine

Aniline b.

How is nylon 6,6 prepared?

What are 'antacids'?

Write any 'two' side effects of tranquilizers.

Explain the mechanism of alkaline hydrolysis of tert-butyl bromide with energy profile ii. diagram.

Define carbolic acid.

How carbolic acid is prepared from benzene sulphonic acid?

BOARD QUESTION PAPER: MARCH 2017

	6 126	
	nt.	•
1		

- i. All questions are compulsory.
- ii. Answers of both the sections should be written in same answer book.
- iii. Draw well labelled diagrams and write balanced equations wherever necessary.
- iv. Figures to the right indicate full marks.
- v. Use of logarithmic table is allowed.
- vi. Every new question must be started on a new page.

SECTION - I

plex [Fe(CO) ₅ NO1 ²⁺	(B) com red (B) (D)	Surface tension, mass Heat capacity, volume uction of nitrate and yields a brown coloured [Fe(NH ₃) ₅ NO] ²⁺ [Fe(H ₂ O) ₅ NO] ²⁺ eed to Mn and P in the zone of				
ch of the following pairs is an intensity Density, viscosity Viscosity, internal energy ions react with nitric oxide formed from the plex [Fe(CO) ₅ NO] ²⁺ [Fe(CH ₃ NH ₂) ₅ NO] ²⁺ O ₂ and Ca ₃ (PO ₄) ₂ present in iron ore ground combustion	ve proper (B) (D) (D) et reduce	Surface tension, mass Heat capacity, volume uction of nitrate and yields a brown coloured [Fe(NH ₃) ₅ NO] ²⁺ [Fe(H ₂ O) ₅ NO] ²⁺ eed to Mn and P in the zone of				
Density, viscosity Viscosity, internal energy ions react with nitric oxide formed fr plex [Fe(CO) ₅ NO] ²⁺ [Fe(CH ₃ NH ₂) ₅ NO] ²⁺ O ₂ and Ca ₃ (PO ₄) ₂ present in iron ore g combustion	(B) (D) (B) (B) (C)	Surface tension, mass Heat capacity, volume uction of nitrate and yields a brown coloured [Fe(NH ₃) ₅ NO] ²⁺ [Fe(H ₂ O) ₅ NO] ²⁺ eed to Mn and P in the zone of				
Viscosity, internal energy ions react with nitric oxide formed fr plex [Fe(CO) ₅ NO] ²⁺ [Fe(CH ₃ NH ₂) ₅ NO] ²⁺ O ₂ and Ca ₃ (PO ₄) ₂ present in iron ore g combustion	(B) (D)	Heat capacity, volume uction of nitrate and yields a brown coloured [Fe(NH ₃) ₅ NO] ²⁺ [Fe(H ₂ O) ₅ NO] ²⁺ eed to Mn and P in the zone of				
ions react with nitric oxide formed from plex [Fe(CO) ₅ NO] ²⁺ [Fe(CH ₃ NH ₂) ₅ NO] ²⁺ O ₂ and Ca ₃ (PO ₄) ₂ present in iron ore growth combustion	(B) (D)	uction of nitrate and yields a brown coloured $[Fe(NH_3)_5NO]^{2+}$ $[Fe(H_2O)_5NO]^{2+}$ eed to Mn and P in the zone of				
plex [Fe(CO) ₅ NO] ²⁺ [Fe(CH ₃ NH ₂) ₅ NO] ²⁺ O ₂ and Ca ₃ (PO ₄) ₂ present in iron ore g combustion	(B) (D)	[Fe(NH3)5NO]2+ $[Fe(H2O)5NO]2+$ end to Mn and P in the zone of				
plex [Fe(CO) ₅ NO] ²⁺ [Fe(CH ₃ NH ₂) ₅ NO] ²⁺ O ₂ and Ca ₃ (PO ₄) ₂ present in iron ore g combustion	(B) (D)	[Fe(NH3)5NO]2+ $[Fe(H2O)5NO]2+$ end to Mn and P in the zone of				
[Fe(CH ₃ NH ₂) ₅ NO] ²⁺ O ₂ and Ca ₃ (PO ₄) ₂ present in iron ore g combustion	(D)	[Fe(H ₂ O) ₅ NO] ²⁺ ed to Mn and P in the zone of				
O ₂ and Ca ₃ (PO ₄) ₂ present in iron ore g combustion	et reduc	ed to Mn and P in the zone of				
O ₂ and Ca ₃ (PO ₄) ₂ present in iron ore g combustion	et reduc	ed to Mn and P in the zone of				
combustion	(D)					
		reduction				
	(D)	slag formation				
onic compound crystallises in FCC ty 'B' ions occupying corners of the cub	•	cture with 'A' ions at the centre of each face formula of compound is				
AB_4	(B)	A_3B				
AB	(D)	AB_3				
On passing 1.5 F charge, the number of moles of aluminium deposited at cathode are [Molar mass of Al = 27 gram mol^{-1}]						
1.0	(B)	13.5				
0.50	(D)	0.75				
	AB bassing 1.5 F charge, the number of mass of Al = 27 gram mol ⁻¹] 1.0 0.50	AB (D) cassing 1.5 F charge, the number of moles of lar mass of Al = 27 gram mol^{-1}] 1.0 (B) 0.50 (C) a chemical reaction, A \rightarrow products, the rate of				

Q.2. Answer any SIX of the following:

[12]

- i. What are 'fuel cells'? Write cathode and anode reaction in a fuel cell.
- ii. Derive the relationship between half life and rate constant for first order reaction.
- iii. Explain magnetic separation process of ores with the help of a neat, labelled diagram.
- iv. Derive the relationship between relative lowering of vapour pressure and molar mass of solute.
- v. Define the term 'enthalpy'.

What will happen to the internal energy if work is done by the system?

- vi. Nitrogen does not form pentahalides. Give reason.
- vii. Calculate the percentage efficiency of packing in case of simple cubic cell.
- viii. Write the electronic configuration of the following elements:
 - a. Sulphur (Z = 16)

b. Krypton (Z = 36)

Q.3. Answer any THREE of the following:

[9]

- i. How is phosphine prepared using the following reagents?
 - a. HCl
 - b. H_2SO_4
 - c. Caustic soda
- ii. 0.05 M NaOH solution offered a resistance of 31.6 Ω in a conductivity cell at 298 K. If the cell constant of the cell is 0.367 cm⁻¹, calculate the molar conductivity of NaOH solution.
- iii. Calculate ΔH° for the reaction between ethene and water to form ethyl alcohol from the following data:

$$\Delta_{c}H^{\circ} C_{2}H_{5}OH_{(l)} = -1368 \text{ kJ}$$

$$\Delta_{\rm c} {\rm H}^{\circ} {\rm C}_2 {\rm H}_{4({\rm g})} = -1410 {\rm kJ}$$

Does the calculated ΔH° represent the enthalpy of formation of liquid ethanol?

iv. In the Arrhenius equation for a first order reaction, the values of 'A' of ' E_a ' are $4 \times 10^{13} \, \text{sec}^{-1}$ and $98.6 \, \text{kJ mol}^{-1}$ respectively. At what temperature will its half life period be 10 minutes?

$$[R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}]$$

[7]

Q.4. Answer any ONE of the following:

i. State Faraday's first law of electrolysis.

Write any 'two' uses of each of the following:

a.
$$H_2SO_4$$

b. Chlorine

Distinguish between crystalline solids and amorphous solids.

A solution of a substance having mass 1.8×10^{-3} kg has the osmotic pressure of 0.52 atm at 280 K. Calculate the molar mass of the substance used.

[Volume =
$$1 \text{ dm}^3$$
, R = $8.314 \text{ J K}^{-1} \text{ mol}^{-1}$]

- ii. Define the following:
 - a. Leaching
 - b. Metallurgy
 - c. Anisotropy

Derive an expression for maximum work.

The boiling point of benzene is 353.23 K. When 1.80 gram of non-volatile solute was dissolved in 90 gram of benzene, the boiling point is raised to 354.11 K. Calculate the molar mass of solute.

[K_b for benzene = 2.53 K kg mol⁻¹]

