Syllabus for TG EAPCET 2025-E Stream (Engineering Stream)

MODEL QUESTIONS – MATHEMATICS

I) The coefficient of x^5 in $(1 - x - x^2 + x^3)^6$ is 20. 1) II) If p and q are the coefficients of x^4 in $(1 + x)^{2n}$ and $(1 + x)^{2n-1}$ respectively then 2p=q. Which of the above statements is (are) true.

1) only I 2) Only II 3) Both I and II 4) Neither I nor II

Assertion (A): If $A+B=45^{\circ}$ then (1+TanA)(1+TanB)=2. 2). Tan 22 $\frac{1}{2}^{\circ} = \sqrt{2} - 1$. Reason(R):

- 1) Both A & R are True and R is the correct explanation of A.
- 2) Both A & R are True and R is not correct explanation of A.
- 3) A is True but R is False.
- 4) R is True but A is False.

Arrange the following statements in ascending order of their results 3)

A) The order of $\left(\frac{d^4y}{dx^4} + \frac{d^2y}{dx^2}\right)^{3/2} = a\left(\frac{d^3y}{dx^3}\right)$ B) The degree of $\left(\frac{dy}{dx} + \frac{d^2y}{dx^2}\right)^{5/4} = a \left(\frac{d^3y}{dx^3}\right)^{2/3}$ C) The degree of $y = \left(1 + \left(\frac{dy}{dx}\right)^2\right)^{3/2} \left(\frac{d^2y}{dx^2}\right)$ D) The order of $x^3 + \left(\frac{d^3y}{dx^3}\right)^2 + 2x^2 \left(\frac{d^2y}{dx^2}\right) - 3y = x^2$ 2) D,C,A,B 1) D,C,B,A 3) C,D,B,A 4) C,D,A,B

4) A and B are two independent events of a sample space such that P(A)=0.2, P(B)=0.5. List I List II

	100011
A) P(B/A)	I) 0.2
B) P(A/B)	II) 0.1
C) $P(A \cap B)$	III) 0.3
D) $P(A \cup B)$	IV) 0.6
-	V) 0.5
The correct match is	
1) A-IV, B-V, C-III, D-I	
2) A-V, B-I, C-II, D-IV	
3) A-III, B-I, C-II, D- IV	
4) A-II, B-I, C-IV, D-V	

5) The lineax + by + c = 0 is a normal to the circle $x^2 + y^2 + 4x + 6y + 8 = 0$ if and only if

(1) 2a + 3b = c (2) 3a + 2b = c (3)2a + 3b + c = 0 (4)3a + 2b + c = 0

Syllabus for TG EAPCET 2025-E Stream (Engineering Stream)

6)
$$\begin{vmatrix} al & bm & cn \\ l^2 & m^2 & n^2 \\ 1 & 1 & 1 \end{vmatrix} = \Delta_1 \text{ and } \begin{vmatrix} a & b & c \\ l & m & n \\ mn & ln & lm \end{vmatrix} = \Delta_2 \text{ then}$$

(1) $\Delta_1 = \Delta_2$ (2) $\Delta_1 = 2\Delta_2$ (3) $2\Delta_1 = \Delta_2$ (4) $\Delta_1 + \Delta_2 = 0$
7) If \bar{a} is a non-zero vector and \bar{b} , \bar{c} are two vectors such that $\bar{a} X \bar{b} = \bar{a} X \bar{c}$ and $\bar{a} \cdot \bar{b} = \bar{a} \cdot \bar{c}$ then
1) $\bar{b} - \bar{c}$ is collinear with \bar{a} 2) $\bar{b} - \bar{c}$ is perpendicular with \bar{a}
3) $\bar{b} = \bar{c}$ 4) $\bar{b} \neq \bar{c}$
8) If $L_1 : 2x + 3y - 20 = 0$, $L_2 : 2x + 3y - 14 = 0$,
then the straight line represented by $a(2x + 3y - 20) + b(2x + 3y - 14) = 0$ is

1) Parallel to
$$L_1 = 0$$
 and $L_2 = 0$.

- 2) Perpendicular to $L_1 = 0$ and parallel to $L_2 = 0$
- 3) Perpendicular to $L_1 = 0$ and $L_2 = 0$
- 4) Parallel to $L_1 = 0$ and Perpendicular to $L_2 = 0$

9) If
$$f(x) = log\left(\frac{1+2x}{1-2x}\right)$$
, then $x =$
1) $\frac{e^{f(x)}-1}{2(e^{f(x)}+1)}$ 2) $\frac{2(e^{f(x)}-1)}{(e^{f(x)}+1)}$ 3) $\frac{e^{f(x)}-1}{(e^{f(x)}+1)}$ 4) $\frac{e^{f(2x)}-1}{(e^{f(2x)}+1)}$

10) If
$$tan\theta = \frac{b}{a}$$
 then $a \cos 2\theta - b \sin 2\theta =$
1) a 2) b 3) $2a$ 4) $2b$
