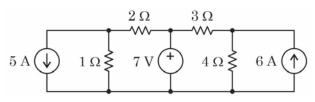
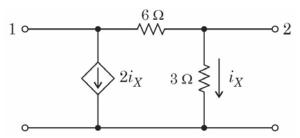

PART III


15 -INSTRUMENTATION, ELECTRONICS AND CONTROL ENGINEERING

(Answer ALL questions)

- 41. An inductor of 25 mH is subjected to an ac voltage of $v(t) = 100 \cos (1000 \ t + 30^{\circ}) \ V$. Instantaneous power in the inductor at t = 0, will be,
 - a. 25 W
 - b. 86.6 W
 - c. 150 W
 - d. 173.2 W
- 42. Assuming the circuit shown in figure below is in steady state before the switch opened at t = 0. The value of voltage across the capacitor v(t) at t = 0 is,

- a. 10 V
- b. 15 V
- c. 20 V
- d. 30 V
- 43. In the linear-bilateral network shown below according to superposition theorem the current through 1Ω resistor due to 5 A current source alone acting is,


- a. 0.83 A
- b. 3.33 A
- c. 4.16 A
- d. 5.31 A

44. The root mean square (rms) value of the voltage waveform shown below is

- a. $V_m \sqrt{\frac{3}{2}}$
- b. $V_m \sqrt{\frac{2}{3}}$
- c. $V_m \sqrt{\frac{1}{2}}$
- d. $V_m \sqrt{\frac{1}{3}}$
- 45. In a series RLC circuit, $R=10\,\Omega$, L=1mH and C=1nF. If the source voltage has a peak value of, $V_m=10$ V, the power dissipated in the circuit at resonance is
 - a. 1 W
 - b. 2 W
 - c. 5 W
 - d. 10 W

46. In the two port network shown in figure below, the z-parameter, Z_{21} is

- a. 1
- b. -1
- c. 3
- d. -3
- 47. The system defined by the difference equation y(n) = 0.3x(n) + 2 can be classified as
 - a. Linear and Causal
 - b. Linear and Non-causal
 - c. Non-Linear and Causal
 - d. Non-Linear and Non-Causal
- 48. The Fourier transform of the signal $x(n) = 2^n u(n)$ is given by
 - a. $1/(1-2e^{j\omega})$
 - b. $1/(1-2e^{-j\omega})$
 - c. $1/(1+2e^{-j\omega})$
 - d. Fourier Transform does not exist for the given x(n)
- 49. The step response of a CT LTI system whose h(t) = u(t) is given by
 - a. $e^{-t}u(t)$
 - b. u(t)
 - c. tu(t)
 - d. $\delta(t)$

- 50. Given X(s) = 1/(s+a), ROC: $\sigma < -a$, the CT signal x(t) is given by
 - a. $x(t) = -e^{-at}u(-t)$
 - b. $x(t) = -e^{at}u(t)$
 - c. $x(t) = e^{-at}u(-t)$
 - d. $x(t) = e^{at}u(t)$
- 51. The circular convolution of the sequences $x(n) = \{1,1,2,1\}$ and $x2(n) = \{1,2,3,4\}$ is given by
 - a. $\{2,3,5,5\}$
 - b. {13,14,12,12}
 - c. $\{1,2,6,4\}$
 - d. {13,14,11,12}
- 52. The desirable characteristics of the window sequence used in FIR filter design include
 - a. Narrow central lobe
 - b. Broad side lobes
 - c. Small central lobe energy
 - d. Gradually increasing side lobe energy
- 53. The reverse saturation current of a PN junction diode at room temperature is 10uA and the thermal voltage is 26mV. If η =2 for Silicon, the diode current for a forward bias voltage of 0.6V is approximately
 - a. 1 A
 - b. 1 mA
 - c. 10 A
 - d. 10 mA
- 54. A BJT has I_{B} = 80uA and I_{C} = 2mA. If I_{B} increases by 25%, find I_{C} .
 - a. 25 mA
 - b. 2.5 mA
 - c. 2 mA
 - d. 20 mA

- 55. Compared to the P-Channel MOSFET, N-Channel MOSFET has
 - a. Smaller drain resistance and smaller size
 - b. Smaller drain resistance and larger size
 - c. Larger drain resistance and smaller size
 - d. Larger drain resistance and larger size
- 56. With respect to the performance of CE, CB and CC configurations of BJT, Choose the wrong statement from the following:
 - a. CB and CC have nearly the same voltage gain
 - b. CC amplifier has the largest current gain
 - c. CE amplifier has the smallest input impedance
 - d. CB has the largest output impedance
- 57. An OPAMP is configured as a non-inverting amplifier with 10K resistance in the feedback path and 2K resistance connected between inverting terminal and GND. What is the gain of the amplifier?
 - a. -5
 - b. +5
 - c. -6
 - d. +6
- 58. An active HPF filter is designed with $R_f=R_i=10 K,\, C=0.01 u F$ and R=15.9 K. The cut-off frequency f_0 and Pass band gain A are calculated as
 - a. $f_0 = 10 \text{kHz}, A = -2$
 - b. $f_0 = 10 \text{kHz}, A = 1$
 - c. $f_0 = 1 \text{kHz}, A = -1$
 - d. $f_0 = 1 \text{kHz}, A = 2$

- 59. The expression $(A + B)(\overline{B} + C)(\overline{A} + C)$ when converted to sum of products form, will become
 - a. $\overline{A} BC$
 - b. $\overline{A} BC + A\overline{B}C$
 - c. $\overline{A} BC + A\overline{B}C + AC$
 - d. $\overline{A}BC + A\overline{B}C + AC + BC$
- 60. In a 1- to -16 demultiplexer, the number of control inputs will be
 - a. 4
 - b. 1
 - c. 2
 - d. 16
- 61. Data sheet of a certain eight bit A/D convertor lists the following specification: 8 bits, full scale error: 0.02% of full scale; full scale analog input: +5V. What is the quantization step size?
 - a. 1.96 mv
 - b. 19.607 mv
 - c. 1 mv
 - d. 20.607 my
- 62. Of the logic families mentioned below, which one that consumes the least power?
 - a. Low power TTL
 - b. Low power schottky TTL
 - c. CMOS
 - d. ECL
- 63. A 4 bit binary UP/DOWN counter is initially reset to 0000. The UP/DOWN mode select terminal designated as \overline{U}/D on the pin configuration diagram of the IC is tied to logic HIGH level. What will be Counter's output state at the end of first clock pulse?
 - a. 0001
 - b. 1000
 - c. 1111
 - d. 0000

- 64. The largest number that can be processed by a microprocessor in a single operation is determined by the size of its
 - a. external data bus
 - b. internal data bus
 - c. address bus
 - d. control bus
- 65. Which of the following is an absolute instrument?
 - a. Permanent Magnet Moving Coil Instruments
 - b. Moving Iron Instruments
 - c. Tangent galvanometer
 - d. Energy meter
- 66. Two resistors R1 and R2 are connected in series. The values of resistance are R1 = $100 \pm 0.2~\Omega$ and R2 = $150 \pm 0.04~\Omega$. What is the uncertainty in the combined resistance for series arrangements?
 - a. $-50 \pm 0.01734 \Omega$
 - b. $250 \pm 0.24 \ \Omega$
 - c. $250 \pm 0.01734 \Omega$
 - d. $50 \pm 0.0209 \ \Omega$
- 67. A Potentiometer is a device for
 - a. Comparing two Current
 - b. Comparing two Voltage
 - c. Measuring Current
 - d. Measuring Current and Voltage
- 68. Maxwell's Inductance-Capacitance bridge is used for measurement of Inductance of
 - a. low Q coils
 - b. medium Q coils
 - c. high Q coils
 - d. low and medium Q coils

- 69. The rise time of an oscilloscope is expressed as
 - a. $t_r = \frac{0.35}{BW}$
 - b. $t_r = 0.35 \times BW$
 - c. $t_r = \frac{0.25}{BW}$
 - d. $t_r = 0.25 \times BW$
- 70. Electrodynamometer-type wattmeters have a construction where
 - a. current coil is fixed
 - b. voltage coil is fixed
 - c. both voltage and current coils are movable
 - d. both voltage and current coils are fixed
- 71. The PH value of a solution is 4. It indicates that concentration of hydrogen ions is
 - a. 10-4 g/L and the solution is acidic
 - b. 10-4 g/L and the solution is alkaline
 - c. 10-4 mg/L and the solution is acidic
 - d. 10⁻⁴ mg/L and the solution is alkaline
- 72. Charge amplifiers are used in order to amplify the output signals of
 - a. Inductive
 - b. Capacitive
 - c. Resistive
 - d. Piezoelectric and capacitive transducers
- 73. A thermistor has a resistance temperature coefficient of -5% over a temperature range of 25°C to 50°C . If the resistance of the thermistor is $100~\Omega$ at 25°C , what is the resistance at 35°C ?
 - a. 50 Ω
 - b. 100 Ω
 - c. 150Ω
 - d. 200 Ω

- 74. A linear resistance potentiometer is 50 mm long and is uniformly wound with wire having a resistance of 10000 Ω . Under normal conditions, the slider is at the center of the potentiometer. What is the linear displacement when the resistance of the potentiometer as measured by a Wheatstone bridge is 3850 Ω ?
 - a. 5.75 mm
 - b. 6.25 mm
 - c. 6.50 mm
 - d. 6.75 mm
- 75. A 2.5 mm thick quartz piezoelectric crystal having a voltage intensity of 0.055 Vm/N is subjected to a pressure of 1.4 MN/m^2 . If the permittivity of quartz is $40.6 \times 10^{-12} \text{ F/m}$, calculate the output voltage
 - a. 190.5 V
 - b. 192.5 V
 - c. 194.5 V
 - d. 196.5 V
- 76. Signal conditioning is carried out by the capillary tubes which convert gas pressure into a mercury height. The statement pertains to
 - a. Bourdon tube pressure gauge
 - b. Pirani gauge
 - c. Mcleod gauge
 - d. Diaphragm pressure transducer
- 77. The Detector used in IR spectroscopy is
 - a. Photomultiplier tubes
 - b. Electron capture detector
 - c. Thermal detectors
 - d. Mass analyzer
- 78. What is the main limitation of using Beer lambert's law?
 - a. It cannot be used for concentrations less than 0.1 M
 - b. It cannot be used for concentrations greater than $0.1\ M$
 - c. It cannot be used for concentrations less than 0.01 M
 - d. It cannot be used for concentrations greater than 0.01 M

- 79. Which of the following is false with respect to chromatography?
 - a. The chromatography column must be temperature controlled
 - b. Mobile phase must be sent along with the sample
 - c. Mobile phase reacts with the sample
 - d. Stationary phase is inside the column
- 80. Chromatography is preferred in industries due to
 - a. High accuracy and online analysis
 - b. Multicomponent analysis
 - c. High accuracy
 - d. Multicomponent and online analysis
- 81. Which of the following analyzers is used for testing the quality of boiler feedwater?
 - a. Paramagnetic oxygen analyzer
 - b. Dissolved oxygen analyzer
 - c. Silica analyzer
 - d. Hydrogen disulphide (H₂S) analyzer
- 82. pH value from a pH meter should always be reported along with
 - a. Temperature
 - b. Conductivity value
 - c. Total dissolved solids
 - d. Pressure
- 83. An Optical Time Domain Reflectometer (OTDR) is a device used for _____.
 - a. measurement of current
 - b. measurement of voltage
 - c. measurement of pressure
 - d. determining the characteristics of an optical fiber cable
- 84. How many number of Modes of an optical fiber are there whose core diameter is 50 μ m, refractive index of core is 1.484, refractive index of cladding is 1.470, and the wavelength of the light source is 850 nm?
 - a. 682
 - b. 37
 - c. 1098
 - d. 359

- 85. Which one of the following is a PN junction device that emits light when a current passes through it in the forward direction?
 - a. Light Dependent Resistor
 - b. Light Emitting Diode
 - c. He-Ne Laser
 - d. Ruby Laser
- 86. The spectral range of a function extends from 10.0 MHz to 10.2 MHz. What is the minimum sampling rate?
 - a. 4000 MHz
 - b. 400 MHz
 - c. 0.4 MHz
 - d. 40 MHz
- 87. An amplitude modulated wave $10[1+0.6\cos 2\pi 10^3t]\cos 2\pi 10^6t$ is to be detected by a linear diode detector. Find the value of resistance R if the capacitor used is $100 \mathrm{pF}$.
 - a. $2.12 \times 10^6 \, ohm$
 - b. $200 \times 10^{13} \ ohm$
 - c. $0.199 \times 10^{15} ohm$
 - d. $900 \times 10^2 ohm$
- 88. Which of the following statements is true in the case of TV transmission?
 - a. Frequency Modulation is employed for both sound and picture
 - b. Amplitude Modulation for picture and Frequency Modulation for sound are employed
 - c. Frequency Modulation for picture and Amplitude Modulation for sound are employed
 - d. Amplitude Modulation is employed for both sound and picture
- 89. Gain margin for marginally stable system in dB is
 - a. Greater than Zero
 - b. Less than Zero
 - c. Equal to Zero
 - d. Equal to One

90. What is the critical gain value of the system with characteristic equation

$$s^4 + 5s^3 + 5s^2 + 4s + K = 0$$
?

- a. 1.36
- b. 2.36
- c. 3.36
- d. 4.36
- 91. Lead compensator behaves like
 - a. Integrator
 - b. Differentiator
 - c. Low pass filter
 - d. Band pass filter
- 92. If the transfer function of open loop system is $G(s)H(s) = \frac{10(s+3)}{(s+2)(s-1)'} \quad \text{then how many}$ encirclements, the Nyquist plot has around -1+j0 point in anticlockwise direction in the G(s)H(s) plane for stable closed loop
 - system? a. 0
 - b. 1
 - c. 2
 - d. 3
- 93. A system is described by the following state space model:-

$$\dot{X} = \begin{bmatrix} -1 & 0 \\ 1 & -2 \end{bmatrix} X + \begin{bmatrix} 1 \\ 0 \end{bmatrix} r(t) \text{ and } Y = \begin{bmatrix} 1 & 1 \end{bmatrix} X.$$

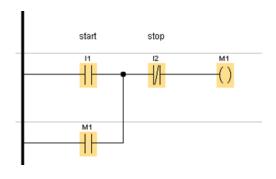
The transfer function of the system is

a.
$$G(s) = \frac{(s+1)}{(s+2)(s+3)}$$

b.
$$G(s) = \frac{(s+2)}{(s+1)(s+3)}$$

c.
$$G(s) = \frac{(s+3)}{(s+1)(s+2)}$$

d.
$$G(s) = \frac{(s+1)}{(s-1)(s-2)}$$


94. The open loop transfer function of the system with unity feedback system is given by

$$G(s) = \frac{K}{s^2(s+1)(s+4)}$$
 and the input signal

applied to the system is given by $r(t) = 1 + 8t + 9t^2$

The value of K for steady state error 0.8 is

- a. 60
- b. 70
- c. 80
- d. 90
- 95. According to IEC-61131-3 which is **NOT** a programming types of PLC
 - a. Functional Block Diagram
 - b. Sequential Function Chart
 - c. Continuous Function Chart
 - d. Ladder Logic
- 96. Convert the ladder logic to Structured Text program

- a. m1=i1 or m1 nand i2
- b. m1:=(i1 or m1) nand i2;
- c. m1:=(i1 or m1) and not i2;
- d. m1:=(i1 nand i2) and i2;

- 97. What is the role of segment coupler in the DCS?
 - a. Couples PROFIBUS DP devices transparently to PROFIBUS PA
 - b. Couples PROFIBUS PA devices transparently to PROFIBUS DP
 - c. Couples PROFINET devices transparently to PROFIBUS DP
 - $\begin{array}{cccc} \text{d.} & \text{Couples} & \text{PROFIBUS} & \text{PA} & \text{devices} \\ & & \text{transparently to PROFINET} \end{array}$
- 98. Which modulation is used in HART Protocol?
 - a. Pulse Shift Keying
 - b. Amplitude Shift Keying
 - c. Binary phase-shift keying
 - d. Frequency Shift Keying
- 99. Which is the only digital Fieldbus protocol developed to fully meet with the original IEC 61158 requirements?
 - a. Foundation Fieldbus H1
 - b. Foundation Fieldbus HSE
 - c. Profibus-DP
 - d. ProfiNet
- 100. The state transition matrix of discrete time $system \; \boldsymbol{A}^k \; is$

a.
$$Z^{-1}\{(ZI-A)^{-1}-Z^{-1}\}$$

b.
$$Z^{-1}\{(ZI - A) Z\}$$

c.
$$Z^{-1}\{(ZI-A)^{-1}Z\}$$

d.
$$Z^{-1}\{(ZI-A)-Z^{-1}\}$$