N 632

Seat No	ı. ┌┬	П	

2024 III 15 1100 - N 632- mathematics (71) Geometry-part II (E)

(REVISED COURSE)				
Time : 2 H	lours (Pages 11) Max. Marks	Max. Marks : 40		
Note :—				
(<i>i</i>)	All questions are compulsory.			
(ii)	Use of a calculator is not allowed.			
(iii)	The numbers to the right of the questions indicate full marks.			
(iv)	In case of MCQs [Q. No. 1(A)] only the first attempt will be evaluated	uated		
	and will be given credit.			
(v)	Draw proper figures wherever necessary.			
(vi)	The marks of construction should be clear. Do not erase them.			
(vii)	Diagram is essential for writing the proof of the theorem.			

1.	(A)	Fou	r alt	ernative answers for each of the following
		sub-c	questi	ons are given. Choose the correct alternative and
		write	e its :	alphabet: 4
		(1)	Out o	of the dates given below which date constitutes a Pythagorean
			triple	et ?
			(A)	15/8/17
			(B)	16/8/16
			(C)	3/5/17
			(D)	4/9/15
		(2)	$\sin \theta$	\times cosec $\theta = ?$
			(A)	1
			(B)	0
			(C)	$\frac{1}{2}$
			(D)	$\sqrt{2}$
		(3)	Slope	e of X-axis is
			(A)	1
			(B)	-1
			(C)	0
			(D)	Cannot be determined

(4)	A circle having radius 3 cm, then the length of its largest
	chord is
	(A) 1.5 cm
	(B) 3 cm
	(C) 6 cm
	(D) 9 cm
Solve	the following sub-questions:
(1)	If ΔABC ~ ΔPQR and AB : PQ = 2 : 3, then find the value
	of $\frac{A(\Delta ABC)}{A(\Delta PQR)}$.
(2)	Two circles of radii 5 cm and 3 cm touch each other externally.
	Find the distance between their centres.
(3)	Find the side of a square whose diagonal is $10\sqrt{2}\;cm$
(4)	Angle made by the line with the positive direction of X-axis is
	45°. Find the slope of that line.

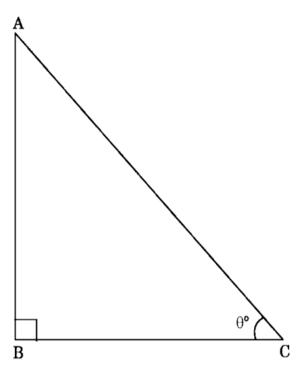
(B)

2. (A) Complete any two activities and rewrite it:

4

 $\begin{array}{c} B \\ \hline \\ O \\ \hline \\ X \\ \end{array}$

In the above figure, ∠ABC is inscribed in arc ABC.


If $\angle ABC = 60^{\circ}$, find $m \angle AOC$.

Solution:

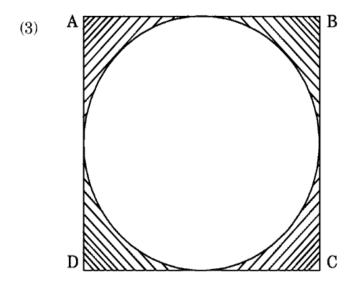
$$= m(\text{arc AXC})$$

But $m\angle AOC = \boxed{m(arc)}$ (Property of central angle)

 $(2) \qquad \text{Find the value of } \sin^2\theta \,+\, \cos^2\theta \,.$

Solution:

In \triangle ABC, \angle ABC = 90°, \angle C = θ °.

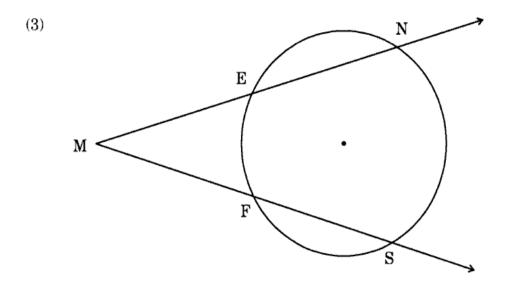

Divide both sides by AC^2

$$\frac{AB^2}{AC^2} + \frac{BC^2}{AC^2} = \frac{AC^2}{AC^2}$$

$$\therefore \qquad \left(\frac{AB}{AC}\right)^2 + \left(\frac{BC}{AC}\right)^2 = 1$$

$$But \quad \frac{AB}{AC} = \boxed{ } \quad and \quad \frac{BC}{AC} = \boxed{ }$$

$$\therefore \qquad \sin^2\theta + \cos^2\theta \; = \; \boxed{}$$

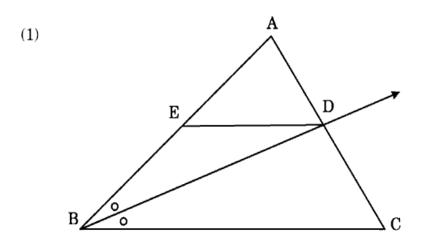


In the figure given above, ___ ABCD is a square and a circle is inscribed in it. All sides of a square touch the circle.

If AB = 14 cm, find the area of shaded region.

Solution:

- (B) Solve any four of the following sub-questions:
 - (1) Radius of a sector of a circle is 3.5 cm and length of its arc is2.2 cm. Find the area of the sector.
 - (2) Find the length of the hypotenuse of a right-angled triangle if remaining sides are 9 cm and 12 cm.



In the above figure, $m(\text{arc NS}) = 125^{\circ}$, $m(\text{arc EF}) = 37^{\circ}$.

Find the measure of $\angle NMS$.

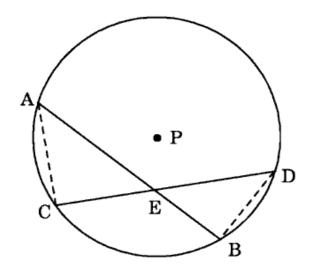
- (4) Find the slope of the line passing through the points A(2, 3), B(4, 7).
- (5) Find the surface area of a sphere of radius 7 cm.

3. (A) Complete any one activity of the following and rewrite it: 3

In \triangle ABC, ray BD bisects \angle ABC, A-D-C, seg DE \parallel side BC, A-E-B, then for showing $\frac{AB}{BC}=\frac{AE}{EB}$, complete the following activity:

Proof:

In \triangle ABC, ray BD bisects \angle B


$$\therefore \qquad \frac{\Box}{BC} = \frac{AD}{DC} \qquad (I) \left(\Box \right)$$

In ∆ABC, DE || BC

$$\therefore \qquad \frac{\Box}{EB} = \frac{AD}{DC} \dots (II) \left(\Box \right)$$

$$\frac{AB}{\blacksquare} = \frac{\blacksquare}{EB}$$
 [from (I) and (II)]

(2)

Given:

Chords AB and CD of a circle with centre P intersect at point E.

To prove: https://www.maharashtrastudy.com

$$AE \times EB = CE \times ED$$

Construction:

Draw seg AC and seg BD.

Fill in the blanks and complete the proof.

Proof:

In \triangle CAE and \triangle BDE

 \cong $\angle BDE$ (angles inscribed in the same arc)

$$\triangle$$
 CAE ~ \triangle BDE

$$\therefore \qquad \overline{DE} = \overline{CE} \qquad \overline{} \qquad \overline{}$$

$$\therefore$$
 AE × EB = CE × ED.

- (B) Solve any two of the following sub-questions:
 - (1) Determine whether the points are collinear.

$$A(1, -3), B(2, -5), C(-4, 7)$$

- (2) Δ ABC ~ Δ LMN. In Δ ABC, AB = 5.5 cm, BC = 6 cm, CA = 4.5 cm. Construct Δ ABC and Δ LMN such that $\frac{BC}{MN} = \frac{5}{4}.$
- (3) Seg PM is a median of Δ PQR, PM = 9 and PQ² + PR² = 290, then find QR.
- (4) Prove that, If a line parallel to a side of a triangle intersects the remaining sides in two distinct points, then the line divides the side in the same proportion'.

8

- 4. Solve any two of the following sub-questions:
 - $(1) \qquad \frac{1}{\sin^2\theta} \frac{1}{\cos^2\theta} \frac{1}{\tan^2\theta} \frac{1}{\cot^2\theta} \frac{1}{\sec^2\theta} \frac{1}{\csc^2\theta} = -3 \text{, then find the}$ value of θ .
 - (2) A cylinder of radius 12 cm contains water up to the height 20 cm. A spherical iron ball is dropped into the cylinder and thus water level raised by 6.75 cm. What is the radius of iron ball?
 - (3) Draw a circle with centre O having radius 3 cm. Draw tangent segments PA and PB through the point P outside the circle such that ∠APB = 70°.

5.	Solv	e any one of the following sub-questions:
	(1)	☐ ABCD is trapezium, AB CD diagonals of trapezium intersects in point P.
		Write the answers of the following questions:
		(a) Draw the figure using given information.
		(b) Write any one pair of alternate angles and opposite angles.
		(c) Write the names of similar triangles with test of similarity.
	(2)	AB is a chord of a circle with centre O. AOC is diameter of circle, AT
		is a tangent at A.
		Write answers of the following questions:
		(a) Draw the figure using given information.
		(b) Find the measures of \angle CAT and \angle ABC with reasons.
		(c) Whether $\angle CAT$ and $\angle ABC$ are congruent? Justify your
		answer.