MHT CET 2025 Apr 9 Shift 1 Question Paper

Time Allowed :3 Hour	Maximum Marks :200	Total Questions : 200
----------------------	--------------------	------------------------------

General Instructions

Read the following instructions very carefully and strictly follow them:

- 1. The test is of 3 hours duration.
- 2. The question paper consists of 200 questions. The maximum marks are 200.
- There are three parts in the question paper consisting of Physics, Chemistry and Biology (Botany and Zoology) having 50 questions in each part of equal weightage.

1. A wire of length *L* having Resistance *R* falls from a height *h* in Earth's horizontal magnetic field. What is the current through the wire?

- (1) $\frac{hB}{R}$
- (2) $\frac{hB^2}{R}$
- (3) $\frac{hB^2}{2R}$
- (4) $\frac{hB}{2R}$

2. Mass = (28 ± 0.01) g, Volume = (5 ± 0.1) cm³. What is the percentage error in density?

(1) $\frac{2.25}{28}\%$

- (2) $\frac{3.57}{28}\%$
- (3) $\frac{1.25}{28}\%$
- (4) $\frac{4.5}{28}\%$

3. The value of g at height h above Earth's surface is $\frac{g}{\sqrt{3}}$. Find h in terms of the radius of the Earth.

(1) R

(2) 2R

(3) $R\sqrt{3}$ (4) $\frac{R}{\sqrt{3}}$

4. Given the voltage equation $V = 100\sqrt{2}\sin(\omega t)$ and capacitance $C = 2 \mu F$, calculate the RMS current.

(1) 10 A

(2) 20 A

(3) 50 A

(4) 100 A

5. The equation for the RMS velocity is given as

$$v_{\rm rms} = \sqrt{\frac{3RT}{M_0}}$$

where R is the gas constant, T is the temperature, and M_0 is the molecular mass. If the temperature is increased, find the new RMS velocity $v_{\rm rms}$ when the temperature is doubled.

(1) $\sqrt{3}v_{\rm rms}$

(2) $2v_{\rm rms}$

(3) $\sqrt{2}v_{\rm rms}$

(4) $\frac{v_{\rm rms}}{\sqrt{2}}$

6. Two spherical black bodies radiate the same amount of heat per second. If their temperatures are T_1 and T_2 , and their radii are R_1 and R_2 , respectively, find the relation between their temperatures and radii.

(1) $T_1 = \sqrt{2}T_2$ (2) $T_1 = 2T_2$ (3) $T_1 = \frac{T_2}{\sqrt{2}}$ (4) $T_1 = \sqrt{3}T_2$

7. Energy stored in a capacitor is given by the equation

$$E = \frac{1}{2}CV^2$$

where: - C is the capacitance, - V is the voltage, - E is the energy stored. Given the values of

C, V, and E, determine the energy stored.

(1) $E = \frac{1}{2}CV^2$ (2) E = CV(3) $E = CV^3$ (4) $E = \frac{1}{2}CV$

8. What is the ratio of the wavelength of the Lyman series limit to the Paschen series

limit?

- (1) 1 : 4
- (2) 1 : 3
- (3) 2 : 3
- (4) 1 : 2

9. What is the ratio of the wavelength of a photon?

- (1) $\lambda = \frac{h}{mv}$ (2) $\lambda = \frac{c}{f}$
- $(2) \times f$
- (3) $\lambda = \frac{E}{h}$
- (4) $\lambda = \frac{h}{E}$