JEE Main 2025 Jan 29 Shift 1

Section: Mathematics Section A

Q.1 Let $\overrightarrow{a} = \overrightarrow{i} + 2\overrightarrow{j} + \overrightarrow{k}$ and $\overrightarrow{b} = 2\overrightarrow{i} + 7\overrightarrow{j} + 3\overrightarrow{k}$. Let $L_1 : \overrightarrow{r} = \begin{pmatrix} \wedge & \wedge & \wedge \\ -\overrightarrow{i} & + 2\overrightarrow{j} & + \overrightarrow{k} \end{pmatrix} + \lambda \overrightarrow{a}, \lambda \in \mathbf{R}$ and

 $L_2:\vec{r}=\left(\hat{j}+\hat{k}\right)+\overset{\rightarrow}{\mu b}, \mu \in \textbf{R} \ \ \text{be two lines}. \ \ \text{If the line L_3 passes through the point of intersection of L_1}$

and $L_{2'}$ and is parallel to $\overrightarrow{a} + \overrightarrow{b}$, then L_3 passes through the point :

Options 1. (-1, -1, 1)

2. (5, 17, 4)

3. (2, 8, 5)

4. (8, 26, 12)

Question Type: MCQ

Question ID: 656445540
Option 1 ID: 6564451845
Option 2 ID: 6564451842
Option 3 ID: 6564451844
Option 4 ID: 6564451843
Status: Answered

Chosen Option: 4

- Q.2 Define a relation R on the interval $\left[0, \frac{\pi}{2}\right]$ by x R y if and only if $\sec^2 x \tan^2 y = 1$. Then R is:
- Options 1 both reflexive and transitive but not symmetric
 - 2. both reflexive and symmetric but not transitive
 - 3. reflexive but neither symmetric not transitive
 - 4. an equivalence relation

Question Type: MCQ

Question ID: 656445526 Option 1 ID: 6564451788 Option 2 ID: 6564451787 Option 3 ID: 6564451786 Option 4 ID: 6564451789

Status : Not Answered

Q.3

The integral $80\int\limits_0^{\frac{\pi}{4}}\left(\frac{\sin\theta+\cos\theta}{9+16\sin2\theta}\right)d\theta$ is equal to :

- Options 1. 6 log_e4
 - 2. 2 log_e3
 - з. 4 log_e3
 - 4. 3 log_e4

Question Type: MCQ

Question ID: 656445543
Option 1 ID: 6564451855
Option 2 ID: 6564451857
Option 3 ID: 6564451856
Option 4 ID: 6564451854

Status : Not Attempted and Marked For Review

Chosen Option: --

Q.4 Let the area of the region $\{(x, y): 2y \le x^2 + 3, y + |x| \le 3, y \ge |x - 1|\}$ be A. Then 6A is equal to:

Options 1. 16

- 2. 18
- 3. 14
- 4. 12

Question Type: MCQ

Question ID: 656445544
Option 1 ID: 6564451859
Option 2 ID: 6564451861
Option 3 ID: 6564451858
Option 4 ID: 6564451860
Status: Not Answered

Let ABC be a triangle formed by the lines 7x-6y+3=0, x+2y-31=0 and 9x-2y-19=0. Let the point (h, k) be the image of the centroid of Δ ABC in the line 3x+6y-53=0. Then h^2+k^2+hk is equal to: Options 1. 47 2. 36 3. 40 4. 37 Question Type: MCQ Question ID: 656445535 Option 1 ID: 6564451824 Option 2 ID: 6564451822 Option 3 ID: 6564451823 Option 4 ID: 6564451825 Status: Not Answered Chosen Option: --Let P be the set of seven digit numbers with sum of their digits equal to 11. If the numbers in P are formed by using the digits 1, 2 and 3 only, then the number of elements in the set P is: Options 1. 158 2. 173 3. 161 4. 164 Question Type: MCQ Question ID: 656445532 Option 1 ID: 6564451810

Question Type: MCQ
Question ID: 656445532
Option 1 ID: 6564451810
Option 2 ID: 6564451813
Option 3 ID: 6564451811
Option 4 ID: 6564451812

Status: Not Attempted and Marked For Review

Q.7 Let
$$y = y(x)$$
 be the solution of the differential equation
$$\cos x (\log_e(\cos x))^2 dy + (\sin x - 3y \sin x \log_e(\cos x)) dx = 0, \ x \in \left(0, \frac{\pi}{2}\right). \text{ If } \ y\left(\frac{\pi}{4}\right) = \frac{-1}{\log_e 2}, \text{ then } \ y\left(\frac{\pi}{6}\right) \text{ is equal to :}$$

Options

1.
$$\frac{1}{\log_e(4) - \log_e(3)}$$

2.
$$\frac{2}{\log_e(3) - \log_e(4)}$$

$$3. - \frac{1}{\log_e(4)}$$

4.
$$\frac{1}{\log_e{(3)} - \log_e{(4)}}$$

Question Type : MCQ

Question ID: 656445545 Option 1 ID: 6564451864 Option 2 ID: 6564451865 Option 3 ID: 6564451862 Option 4 ID: 6564451863 Status: Not Answered

Chosen Option : --

Q.8 Let
$$A = \begin{bmatrix} a_{ij} \end{bmatrix} = \begin{bmatrix} \log_5 128 & \log_4 5 \\ \log_5 8 & \log_4 25 \end{bmatrix}$$
.

If A_{ij} is the cofactor of a_{ij} , $C_{ij} = \sum_{k=1}^{2} a_{ik} A_{jk}$, $1 \le i, j \le 2$, and $C = [C_{ij}]$, then 8|C| is equal to:

Options 1. 242

2. 222

3. 262

4. 288

Question Type : MCQ

Question ID: 656445529
Option 1 ID: 6564451798
Option 2 ID: 6564451801
Option 3 ID: 6564451800
Option 4 ID: 6564451799
Status: Not Answered

Let the ellipse E_1 : $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, a > b and E_2 : $\frac{x^2}{A^2} + \frac{y^2}{B^2} = 1$, A < B have same eccentricity

 $\frac{1}{\sqrt{3}}$. Let the product of their lengths of latus rectums be $\frac{32}{\sqrt{3}}$, and the distance between the foci of E_1 be 4. If E_1 and E_2 meet at A, B, C and D, then the area of the quadrilateral ABCD equals :

Options

$$\frac{18\sqrt{6}}{5}$$

3.
$$\frac{12\sqrt{6}}{5}$$

4.
$$\frac{24\sqrt{6}}{5}$$

Question Type : MCQ

Question ID: 656445538
Option 1 ID: 6564451835
Option 2 ID: 6564451837
Option 3 ID: 6564451834
Option 4 ID: 6564451836
Status: Not Answered

Chosen Option: --

Q.10 Let M and m respectively be the maximum and the minimum values of

$$f(x) = \begin{vmatrix} 1 + \sin^2 x & \cos^2 x & 4\sin 4x \\ \sin^2 x & 1 + \cos^2 x & 4\sin 4x \\ \sin^2 x & \cos^2 x & 1 + 4\sin 4x \end{vmatrix}, x \in \mathbb{R}$$

Then $M^4 - m^4$ is equal to :

Options 1. 1215

2. 1040

s. 1295

4. 1280

Question Type : \boldsymbol{MCQ}

Question ID: 656445542 Option 1 ID: 6564451851 Option 2 ID: 6564451850 Option 3 ID: 6564451853 Option 4 ID: 6564451852 Status: Not Answered

Q.11 Consider an A. P. of positive integers, whose sum of the first three terms is 54 and the sum of the first twenty terms lies between 1600 and 1800. Then its 11^{th} term is:

Options 1. 122

- 2.84
- 3. 90
- 4. 108

Question Type : MCQ

Question ID: 656445531 Option 1 ID: 6564451809 Option 2 ID: 6564451806 Option 3 ID: 6564451807 Option 4 ID: 6564451808

Status: Answered

Chosen Option: 3

Q.12

The number of solutions of the equation $\left(\frac{9}{x} - \frac{9}{\sqrt{x}} + 2\right)\left(\frac{2}{x} - \frac{7}{\sqrt{x}} + 3\right) = 0$ is:

Options 1. 3

- 2. 1
- 3. 2
- 4. 4

Question Type: MCQ

Question ID: 656445528
Option 1 ID: 6564451796
Option 2 ID: 6564451794
Option 3 ID: 6564451795
Option 4 ID: 6564451797
Status: Not Answered

Q.13 Let $\overrightarrow{a} = 2 \hat{i} - \hat{j} + 3 \hat{k}$, $\overrightarrow{b} = 3 \hat{i} - 5 \hat{j} + \hat{k}$ and \overrightarrow{c} be a vector such that $\overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{c} \times \overrightarrow{b}$ and

 $\begin{pmatrix} \overrightarrow{a} + \overrightarrow{c} \end{pmatrix} \cdot \begin{pmatrix} \overrightarrow{b} + \overrightarrow{c} \end{pmatrix} = 168$. Then the maximum value of $|\overrightarrow{c}|^2$ is:

Options 1. 462

- 2. 77
- з. 308
- 4. 154

Question Type : MCQ

Question ID : **656445541** Option 1 ID: 6564451849 Option 2 ID: 6564451846 Option 3 ID: 6564451848 Option 4 ID: 6564451847

Status: Answered

Chosen Option: 3

Let the line x+y=1 meet the circle $x^2+y^2=4$ at the points A and B. If the line perpendicular to AB and passing through the mid point of the chord AB intersects the circle at C and D, then the area of the quadrilateral ADBC is equal to:

- Options 1. $\sqrt{14}$

 - 3√7
 - 4. $2\sqrt{14}$

Question Type: MCQ

Question ID: 656445536 Option 1 ID: 6564451826 Option 2 ID: 6564451829 Option 3 ID: 6564451828 Option 4 ID: 6564451827

Status: Not Answered

Q.15 Let $|z_1 - 8 - 2i| \le 1$ and $|z_2 - 2 + 6i| \le 2$, $z_1, z_2 \in \mathbb{C}$. Then the minimum value of $|z_1 - z_2|$ is:

Options 1. 13

2. 7

3. 10

4. 3

Question Type: MCQ

Question ID: 656445527 Option 1 ID: 6564451793 Option 2 ID: 6564451792 Option 3 ID: 6564451790 Option 4 ID: 6564451791

Status : **Not Answered** Chosen Option : --

Q.16 The least value of n for which the number of integral terms in the Binomial expansion of $(\sqrt[3]{7} + \sqrt[12]{11})^n$ is 183, is:

Options 1. 2196

2. 2172

з. 2184

4. 2148

Question Type : MCQ

Question ID: 656445533 Option 1 ID: 6564451816 Option 2 ID: 6564451814 Option 3 ID: 6564451815 Option 4 ID: 6564451817

Status : **Not Attempted and Marked For Review**

Chosen Option: --

Q.17 Two parabolas have the same focus (4, 3) and their directrices are the *x*-axis and the *y*-axis, respectively. If these parabolas intersects at the points A and B, then $(AB)^2$ is equal to:

Options 1. 392

2. 192

3. 96

4. 384

Question Type : \boldsymbol{MCQ}

Question ID: 656445537 Option 1 ID: 6564451833 Option 2 ID: 6564451831 Option 3 ID: 6564451830 Option 4 ID: 6564451832

Status: Not Answered

The value of $\lim_{n\to\infty} \left(\sum_{k=1}^n \frac{k^3 + 6k^2 + 11k + 5}{(k+3)!}\right)$ is :

Options 1. 4/3

- 2. 5/3
- 3. 2
- 4. 7/3

Question Type: MCQ

Question ID: 656445530 Option 1 ID: 6564451804 Option 2 ID: 6564451802 Option 3 ID: 6564451803 Option 4 ID: 6564451805

> **Not Attempted and Marked For Review**

Chosen Option: --

Let $x_1, x_2, ..., x_{10}$ be ten observations such that $\sum_{i=1}^{10} (x_i - 2) = 30$, $\sum_{i=1}^{10} (x_i - \beta)^2 = 98$, $\beta > 2$, and

their variance is $\frac{4}{5}$. If μ and σ^2 are respectively the mean and the variance of $2(x_1-1)+4\beta$,

 $2(x_2-1)+4\beta$,, $2(x_{10}-1)+4\beta$, then $\frac{\beta\mu}{\sigma^2}$ is equal to:

Options 1. 100

- 2. 110
- 3. 90
- 4. 120

Question Type: MCQ

Question ID: 656445534 Option 1 ID: 6564451818 Option 2 ID: 6564451820 Option 3 ID: 6564451819 Option 4 ID: 6564451821 Status: Not Answered

Q.20 Let
$$L_1: \frac{x-1}{1} = \frac{y-2}{-1} = \frac{z-1}{2}$$
 and $L_2: \frac{x+1}{-1} = \frac{y-2}{2} = \frac{z}{1}$ be two lines.

Let L_3 be a line passing through the point (a, $\beta,\,\gamma)$ and be perpendicular to both L_1 and $L_2.$ If L_3 intersects $L_1,$ then $|5\alpha-11\beta-8\gamma|$ equals :

Options 1. 18

- 2. 20
- 3. 16
- 4. 25

Question Type : MCQ

Question ID: 656445539
Option 1 ID: 6564451839
Option 2 ID: 6564451840
Option 3 ID: 6564451838
Option 4 ID: 6564451841
Status: Answered

Chosen Option: 4

Section: Mathematics Section B

Q.21 Let [t] be the greatest integer less than or equal to t. Then the least value of peN for which

$$\lim_{x \to 0^+} \left(x \left(\left[\frac{1}{x} \right] + \left[\frac{2}{x} \right] + \dots + \left[\frac{p}{x} \right] \right) - x^2 \left(\left[\frac{1}{x^2} \right] + \left[\frac{2^2}{x^2} \right] + \dots + \left[\frac{9^2}{x^2} \right] \right) \right) \ge 1 \text{ is equal to } \underline{\qquad}$$

Give --

Ans wer:

Question Type : SA

Question ID : **656445549**Status : **Not Answered**

Q.22 Let
$$S = \{x : \cos^{-1}x = \pi + \sin^{-1}x + \sin^{-1}(2x+1)\}$$
. Then $\sum_{x \in S} (2x-1)^2$ is equal to _____.

Give --

n

Ans wer:

Question Type: SA

Question ID : **656445548**Status : **Not Answered**

Q.23 Let $f: (0, \infty) \to \mathbb{R}$ be a twice differentiable function. If for some $a \neq 0$, $\int_{0}^{1} f(\lambda x) d\lambda = af(x)$, f(1) = 1 and

$$f(16) = \frac{1}{8}$$
, then $16 - f'(\frac{1}{16})$ is equal to _____.

Give --

n

Ans

wer:

Question Type : SA

Question ID : 656445550 Status : Not Answered

Q.24 The number of 6-letter words, with or without meaning, that can be formed using the letters of the word MATHS such that any letter that appears in the word must appear at least twice, is

Give --

n

Ans

wer:

Question Type : SA

Question ID : 656445547

Status: Not Answered

Let
$$S = \left\{ m \in \mathbb{Z} : A^{m^2} + A^m = 3I - A^{-6} \right\}$$
, where $A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}$. Then $n(S)$ is equal to

Give --

n Ans

wer:

Question Type : SA

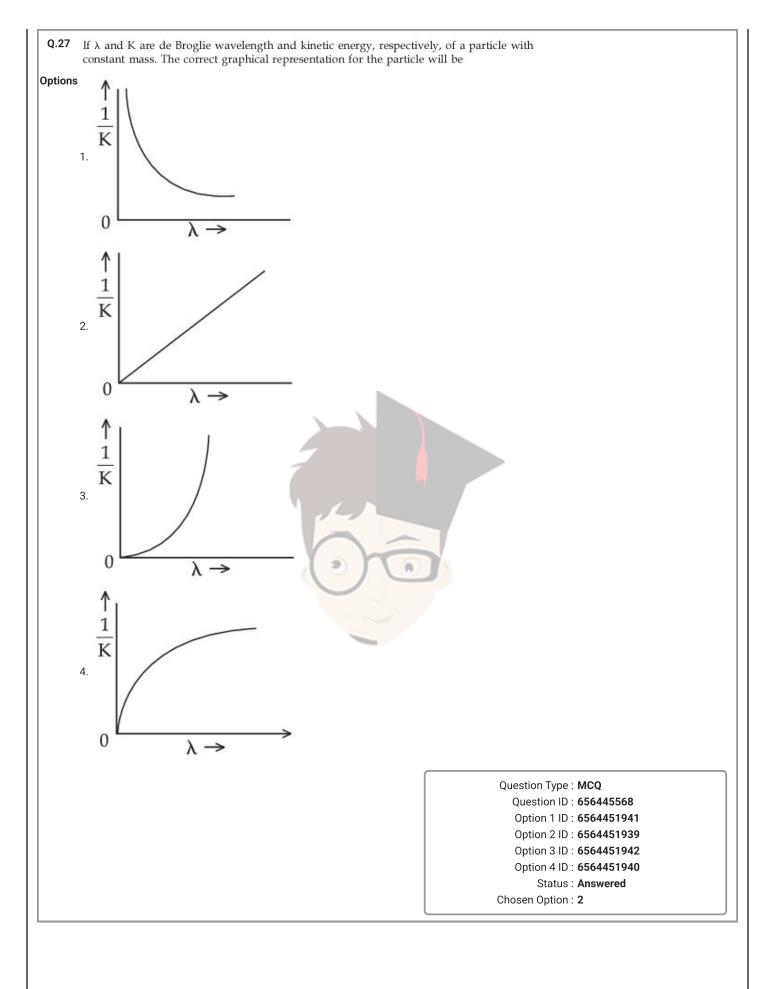
Question ID : **656445546**Status : **Not Answered**

Section: Physics Section A

Q.26 A coil of area A and N turns is rotating with angular velocity ω in a uniform magnetic field \overrightarrow{B} about an axis perpendicular to \overrightarrow{B} . Magnetic flux φ and induced emf ϵ across it, at an instant when \overrightarrow{B} is parallel to the plane of coil, are :

Options 1. $\varphi = AB$, $\varepsilon = 0$

2.
$$\varphi = 0$$
, $\varepsilon = 0$


3.
$$\varphi = 0$$
, $\varepsilon = NAB\omega$

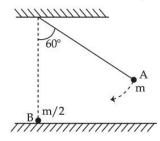
4.
$$\varphi = AB$$
, $\varepsilon = NAB\omega$

Question Type : MCQ

Question ID: 656445564
Option 1 ID: 6564451925
Option 2 ID: 6564451923
Option 3 ID: 6564451924
Option 4 ID: 6564451926
Status: Not Answered

The pair of physical quantities not having same dimensions is:

Options 1. Torque and energy


- 2. Pressure and Young's modulus
- 3. Angular momentum and Planck's constant
- 4. Surface tension and impulse

Question Type: MCQ

Question ID: 656445551 Option 1 ID: 6564451873 Option 2 ID: 6564451871 Option 3 ID: 6564451874 Option 4 ID: 6564451872 Status: Answered

Chosen Option: 4

As shown below, bob A of a pendulum having massless string of length 'R' is released from 60° to the vertical. It hits another bob B of half the mass that is at rest on a friction less table in the center. Assuming elastic collision, the magnitude of the velocity of bob A after the collision will be (take g as acceleration due to gravity.)

Options

$$1 \frac{1}{3} \sqrt{Rg}$$

2.
$$\sqrt{Rg}$$

3.
$$\frac{2}{3}\sqrt{Rg}$$

2.
$$\sqrt{Rg}$$
3. $\frac{2}{3}\sqrt{Rg}$
4. $\frac{4}{3}\sqrt{Rg}$

Question Type : MCQ

Question ID: 656445555 Option 1 ID: 6564451888 Option 2 ID: 6564451890 Option 3 ID: 6564451889

Option 4 ID: 6564451887 Status: Answered

Q.30 At the interface between two materials having refractive indices n_1 and n_2 , the critical angle for reflection of an em wave is θ_{1C} . The n_2 material is replaced by another material having refractive index n_3 such that the critical angle at the interface between n_1 and n_3

$$\text{materials is } \theta_{2C}. \ \text{If } n_3 \geq n_2 \geq n_1 \ ; \ \frac{n_2}{n_3} = \frac{2}{5} \ \text{and } \sin\!\theta_{2C} - \sin\!\theta_{1C} = \frac{1}{2} \text{, then } \theta_{1C} \text{ is }$$

Options

$$1. \sin^{-1}\left(\frac{5}{6n_1}\right)$$

$$^{2} \sin^{-1}\left(\frac{2}{3n_1}\right)$$

$$^{3.} \sin^{-1}\left(\frac{1}{3n_1}\right)$$

$$^{4.} \sin^{-1}\left(\frac{1}{6n_1}\right)$$

Question Type : MCQ

Question ID: 656445566
Option 1 ID: 6564451933
Option 2 ID: 6564451931
Option 3 ID: 6564451934
Option 4 ID: 6564451932
Status: Not Answered

Chosen Option: --

Q.31 The workdone in an adiabatic change in an ideal gas depends upon only:

Options 1. change in its pressure

- 2. change in its volume
- 3. change in its specific heat
- 4. change in its temperature

Question Type: MCQ

Question ID: 656445557 Option 1 ID: 6564451896 Option 2 ID: 6564451895 Option 3 ID: 6564451898 Option 4 ID: 6564451897 Status: Answered

Q.32 Two projectiles are fired with same initial speed from same point on ground at angles of $(45^{\circ} - \alpha)$ and $(45^{\circ} + \alpha)$, respectively, with the horizontal direction. The ratio of their maximum heights attained is :

Options

- $\frac{1 \tan \alpha}{1 + \tan \alpha}$
- $\frac{1-\sin 2\alpha}{1+\sin 2\alpha}$
- 3. $\frac{1+\sin 2\alpha}{1-\sin 2\alpha}$
- 4. $\frac{1+\sin\alpha}{1-\sin\alpha}$

Question Type : MCQ

Question ID: 656445553
Option 1 ID: 6564451879
Option 2 ID: 6564451881
Option 3 ID: 6564451882
Option 4 ID: 6564451880
Status: Answered

Chosen Option : 2

Q.33

The fractional compression $\left(\frac{\Delta V}{V}\right)$ of water at the depth of 2.5 km below the sea level is

 $\frac{}{\text{kg m}^{-3}}$ %. Given, the Bulk modulus of water = 2×10^9 N m⁻², density of water = 10^3 kg m⁻³, acceleration due to gravity = g = 10 m s⁻².

Options 1. 1.5

- 2. 1.0
- з. 1.75
- 4. 1.25

Question Type: MCQ

Question ID: 656445556 Option 1 ID: 6564451893 Option 2 ID: 6564451891 Option 3 ID: 6564451894 Option 4 ID: 6564451892 Status: Not Answered

Q.34 Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A): Choke coil is simply a coil having a large inductance but a small resistance. Choke coils are used with fluorescent mercury-tube fittings. If household electric power is directly connected to a mercury tube, the tube will be

damaged.

Reason (R): By using the choke coil, the voltage across the tube is reduced by a factor

 $\left(R/\sqrt{R^2+\omega^2L^2}\right)$, where ω is frequency of the supply across resistor R and inductor L. If the choke coil were not used, the voltage across the resistor would be the same as the applied voltage.

In the light of the above statements, choose the **most appropriate answer** from the options given below:

Options 1.

Both (A) and (R) are true and (R) is the correct explanation of (A)

2. (A) is false but (R) is true

3.

Both (A) and (R) are true but (R) is not the correct explanation of (A)

4. (A) is true but (R) is false

Question Type : MCQ

Question ID: 656445562
Option 1 ID: 6564451915
Option 2 ID: 6564451918
Option 3 ID: 6564451916
Option 4 ID: 6564451917
Status: Not Answered

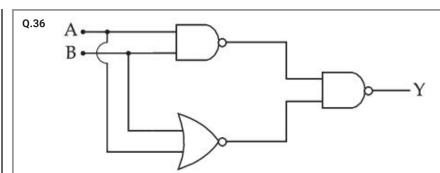
Chosen Option: --

Q.35 Consider I_1 and I_2 are the currents flowing simultaneously in two nearby coils 1 & 2, respectively. If L_1 = self inductance of coil 1, M_{12} = mutual inductance of coil 1 with respect to coil 2, then the value of induced emf in coil 1 will be

Options

1.
$$\varepsilon_1 = -L_1 \frac{dI_2}{dt} - M_{12} \frac{dI_1}{dt}$$

2.
$$\varepsilon_1 = -L_1 \frac{dI_1}{dt} + M_{12} \frac{dI_2}{dt}$$

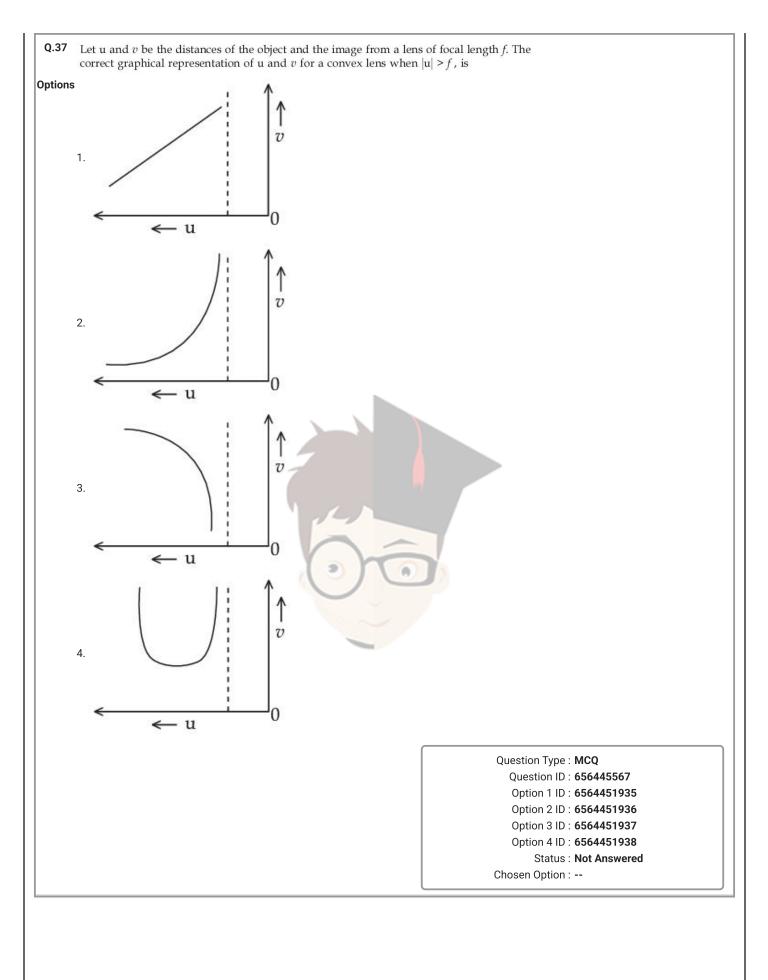

3.
$$\varepsilon_1 = -L_1 \frac{dI_1}{dt} - M_{12} \frac{dI_1}{dt}$$

4.
$$\varepsilon_1 = -L_1 \frac{dI_1}{dt} - M_{12} \frac{dI_2}{dt}$$

Question Type: MCQ

Question ID: 656445559
Option 1 ID: 6564451906
Option 2 ID: 6564451905
Option 3 ID: 6564451904
Option 4 ID: 6564451903

Status: Not Answered


For the circuit shown above, equivalent GATE is:

Options 1. AND gate

- 2. OR gate
- 3. NAND gate
- 4. NOT gate

Question Type: MCQ
Question ID: 656445570
Option 1 ID: 6564451947
Option 2 ID: 6564451948
Option 3 ID: 6564451950

Option 4 ID : 6564451949 Status : Not Answered

Q.38 Consider a long straight wire of a circular cross-section (radius a) carrying a steady current I. The current is uniformly distributed across this cross-section. The distances from the centre of the wire's cross-section at which the magnetic field [inside the wire, outside the wire] is half of the maximum possible magnetic field, any where due to the wire, will be

Options 1. [a/2, 3a]

Question Type: MCQ

Question ID: 656445561 Option 1 ID: 6564451911 Option 2 ID: 6564451912 Option 3 ID: 6564451914 Option 4 ID: 6564451913 Status: Not Answered

Chosen Option: --

Q.39 An electric dipole of mass m, charge q, and length l is placed in a uniform electric field $\overrightarrow{E} = E_0 \hat{i}$. When the dipole is rotated slightly from its equilibrium position and released, the time period of its oscillations will be:

Options

1.
$$2\pi\sqrt{\frac{ml}{qE_0}}$$

2.
$$\frac{1}{2\pi} \sqrt{\frac{2ml}{qE_0}}$$

3.
$$\frac{1}{2\pi} \sqrt{\frac{ml}{2qE_0}}$$

4.
$$2\pi\sqrt{\frac{ml}{2qE_0}}$$

Question Type: MCQ

Question ID: 656445563
Option 1 ID: 6564451922
Option 2 ID: 6564451921
Option 3 ID: 6564451919
Option 4 ID: 6564451920
Status: Not Answered

Q.40 A body of mass 'm' connected to a massless and unstretchable string goes in verticle circle of radius 'R'under gravity g. The other end of the string is fixed at the center of circle. If velocity at top of circular path is $n\sqrt{gR}$, where, $n \ge 1$, then ratio of kinetic energy of the body at bottom to that at top of the circle is

Options

$$\frac{n^2}{n^2+4}$$

$$2. \frac{n}{n+4}$$

3.
$$\frac{n+4}{n}$$

4.
$$\frac{n^2+4}{n^2}$$

Question Type: MCQ

Question ID: 656445554
Option 1 ID: 6564451883
Option 2 ID: 6564451886
Option 3 ID: 6564451885
Option 4 ID: 6564451884
Status: Not Answered

Chosen Option: --

Q.41 Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A): Time period of a simple pendulum is longer at the top of a mountain than that at the base of the mountain.

Reason (R): Time period of a simple pendulum decreases with increasing value of acceleration due to gravity and vice-versa.

In the light of the above statements, choose the **most appropriate** answer from the options given below :

Options 1.

Both (A) and (R) are true but (R) is not the correct explanation of (A)

2. (A) is false but (R) is true

3.

Both (A) and (R) are true and (R) is the correct explanation of (A)

4. (A) is true but (R) is false

Question Type: MCQ

Question ID: 656445558
Option 1 ID: 6564451900
Option 2 ID: 6564451902
Option 3 ID: 6564451899
Option 4 ID: 6564451901
Status: Answered

Q.42 Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A): Electromagnetic waves carry energy but not momentum.

Reason (R): Mass of a photon is zero.

In the light of the above statements, choose the **most appropriate answer** from the options given below :

Options 1.

Both (A) and (R) are true and (R) is the correct explanation of (A)

2. (A) is false but (R) is true

3.

Both (A) and (R) are true but (R) is not the correct explanation of (A)

4 (A) is true but (R) is false

Question Type : MCQ

Question ID: 656445565
Option 1 ID: 6564451927
Option 2 ID: 6564451930
Option 3 ID: 6564451928
Option 4 ID: 6564451929
Status: Answered

Q.43 Match List - I with List - II.

List - I

List - II σ/ϵ_0 (I)

- (A) Electric field inside (distance r > 0 from center) of a uniformly charged spherical shell with surface charge density σ , and radius R.
- Electric field at distance r>0 from a uniformly charged infinite plane sheet with surface charge density σ.
- (II) $\sigma/2\epsilon_0$
- Electric field outside (distance r>0 from center) of a uniformly charged spherical shell with surface charge density σ, and radius R.
- (III) 0
- (D) Electric field between 2 oppositely charged infinite plane parallel sheets with uniform surface charge density σ.
- (IV) $\frac{\sigma}{\epsilon_0 r^2}$

Choose the correct answer from the options given below:

Question Type: MCQ Question ID: 656445560

Option 1 ID: 6564451907 Option 2 ID: 6564451910 Option 3 ID: 6564451908 Option 4 ID: 6564451909 Status: Answered

Chosen Option: 3

The expression given below shows the variation of velocity (v) with time (t),

$$v = At^2 + \frac{Bt}{C+t}$$
. The dimension of ABC is:

Options 1.
$$[M^0L^2T^{-3}]$$

2.
$$[M^0L^1T^{-3}]$$

3.
$$[M^0L^2T^{-2}]$$

4.
$$[M^0L^1T^{-2}]$$

Question Type: MCQ

Question ID: 656445552 Option 1 ID: 6564451877 Option 2 ID: 6564451878 Option 3 ID: 6564451875 Option 4 ID: 6564451876 Status: Answered

Q.45 Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A): Emission of electrons in photoelectric effect can be suppressed by applying a sufficiently negative electron potential to the photoemissive substance.

A negative electric potential, which stops the emission of electrons from

the surface of a photoemissive substance, varies linearly with frequency

of incident radiation.

In the light of the above statements, choose the **most appropriate answer** from the options given below:

Options 1.

Both (A) and (R) are true but (R) is not the correct explanation of (A)

2. (A) is true but (R) is false

3

Reason (R):

Both (A) and (R) are true and (R) is the correct explanation of (A)

4 (A) is false but (R) is true

Question Type: MCQ
Question ID: 656445569
Option 1 ID: 6564451944
Option 2 ID: 6564451945
Option 3 ID: 6564451943

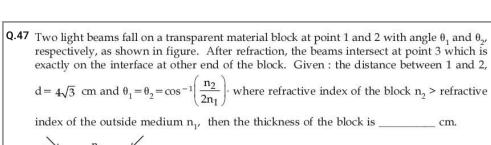
Option 4 ID : **6564451946** Status : **Answered**

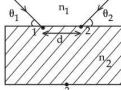
Chosen Option : 3

Section: Physics Section B

Q.46 The coordinates of a particle with respect to origin in a given reference frame is (1, 1, 1) meters. If a force of $\overrightarrow{F} = \hat{i} - \hat{j} + \hat{k}$ acts on the particle, then the magnitude of torque (with

respect to origin) in z-direction is ______.


Give 2


Ans

wer:

Question Type: SA

Question ID : **656445571** Status : **Answered**

Give -n Ans wer :

Question Type : ${\bf SA}$

Question ID : **656445575** Status : **Not Answered**

Q.48 A container of fixed volume contains a gas at 27° C. To double the pressure of the gas, the temperature of gas should be raised to _____ °C.

Give **327** n

Ans

wer:

Question Type : **SA**

Question ID : 656445574 Status : Answered

Q.49 The maximum speed of a boat in still water is 27 km/h. Now this boat is moving downstream in a river flowing at 9 km/h. A man in the boat throws a ball vertically upwards with speed of 10 m/s. Range of the ball as observed by an observer at rest on the river bank, is _____ cm. (Take g=10 m/s²)

Give **500**

n

Ans wer:

Question Type: SA

Question ID : **656445572** Status : **Answered**

Q.50 In a hydraulic lift, the surface area of the input piston is 6 cm² and that of the output piston is 1500 cm². If 100 N force is applied to the input piston to raise the output piston by 20 cm, then the work done is _____ kJ.

Give 5

n

Ans wer:

Question Type : ${\bf SA}$

Question ID : **656445573** Status : **Answered** Q.51 $\,$ The correct increasing order of stability of the complexes based on $\boldsymbol{\Delta}_{0}$ value is :

 $[Mn(CN)_6]^{3-}$ II. $[Co(CN)_6]^{4-}$ III. $[Fe(CN)_6]^{4-}$ IV. $[Fe(CN)_6]^{3-}$

Options 1. IV < III < II < I

2. I < II < IV < III

3. III < II < IV < I

4. II < III < I < IV

Question Type : MCQ

Question ID: 656445588 Option 1 ID: 6564452007 Option 2 ID: 6564452004 Option 3 ID: 6564452006 Option 4 ID: 6564452005 Status: Answered

In the following substitution reaction:

$$\begin{array}{c|c}
Br \\
\hline
C_2H_5ONa \\
\hline
C_2H_5OH \\
Product
\end{array}$$
P
Product

product 'P' formed is:

tions
$$\begin{array}{c}
Br \\
OC_2H_5\\
NO_2\\
OC_2H_5\\
OC_2H_5\\
OC_2H_5\\
NO_2\\
OC_2H_5\\
Br

3.$$

Question Type: MCQ Question ID: 656445593 Option 1 ID: 6564452025 Option 2 ID: 6564452026 Option 3 ID: 6564452024 Option 4 ID: 6564452027 Status: Answered

 $^{
m Q.53}$ Total number of nucleophiles from the following is:

NH₃, PhSH, (H₃C)₂S, H₂C=CH₂, $\stackrel{\ominus}{O}$ H, H₃O $\stackrel{\oplus}{}$, (CH₃)₂ CO, \triangleright NCH₃

Options 1. 6

- 2. 5
- 3. 4
- 4. 7

Question Type: MCQ

Question ID: 656445591 Option 1 ID: 6564452019 Option 2 ID: 6564452017 Option 3 ID: 6564452016 Option 4 ID: 6564452018 Status: Not Answered

Status . Not Aliswei

Chosen Option: --

Q.54 The molar conductivity of a weak electrolyte when plotted against the square root of its concentration, which of the following is expected to be observed?

Options 1.

A small decrease in molar conductivity is observed at infinite dilution.

2.

A small increase in molar conductivity is observed at infinite dilution.

3

Molar conductivity increases sharply with increase in concentration.

4.

Molar conductivity decreases sharply with increase in concentration.

Question Type: MCQ

Question ID: 656445581 Option 1 ID: 6564451978 Option 2 ID: 6564451979 Option 3 ID: 6564451976 Option 4 ID: 6564451977 Status: Answered

Q.55 Given below are two statements:

 ${\bf Statement} \ ({\bf I}): \quad {\bf The} \ {\bf radii} \ {\bf of} \ {\bf isoelectronic} \ {\bf species} \ {\bf increases} \ {\bf in} \ {\bf the} \ {\bf order}.$

$$Mg^{2+} < Na^+ < F^- < O^{2-}$$

Statement (II): The magnitude of electron gain enthalpy of halogen decreases in the order.

In the light of the above statements, choose the **most appropriate answer** from the options given below:

Options 1 Both Statement I and Statement II are correct

- ² Statement I is incorrect but Statement II is correct
- 3. Statement I is correct but Statement II is incorrect
- 4. Both Statement I and Statement II are incorrect

Question Type : MCQ

Question ID: 656445585
Option 1 ID: 6564451992
Option 2 ID: 6564451995
Option 3 ID: 6564451994
Option 4 ID: 6564451993
Status: Answered

 $^{Q.56}$ The product (P) formed in the following reaction is:

Options

2.

3.

Question Type : MCQ

Question ID: 656445594 Option 1 ID: 6564452030 Option 2 ID: 6564452028 Option 3 ID: 6564452031 Option 4 ID: 6564452029

Status: Answered

Chosen Option: 3

Q.57 Match List - I with List - II.

List - I

List - II

(Complex)

(Hybridisation & Magnetic characters)

- (A) $[MnBr_4]^{2-}$
- d²sp³ & diamagnetic (I)
- (B) $[FeF_6]^{3-}$
- (II) sp³d² & paramagnetic
- (C) $[Co(C_2O_4)_3]^{3}$
- (III) sp³ & diamagnetic
- (D) [Ni(CO)₄]
- (IV) sp³ & paramagnetic

Choose the correct answer from the options given below:

Question Type: MCQ

Question ID: 656445587 Option 1 ID: 6564452003 Option 2 ID: 6564452000 Option 3 ID: 6564452001 Option 4 ID: 6564452002

Status: Answered

Q.58

At temperature T, compound $AB_{2(g)}$ dissociates as $AB_{2(g)} = AB_{(g)} + \frac{1}{2}B_{2(g)}$ having degree of dissociation x (small compared to unity). The correct expression for x in terms of K_p and p is

Options 1.
$$\sqrt{K_p}$$

$$2. \sqrt[3]{\frac{2K_p}{p}}$$

3.
$$\sqrt[4]{\frac{2K_p}{p}}$$

$$4. \sqrt[3]{\frac{2K_p^2}{p}}$$

Question Type: MCQ

Question ID : **656445580** Option 1 ID: 6564451975 Option 2 ID: 6564451974 Option 3 ID: 6564451972 Option 4 ID: **6564451973**

Status: Answered

Q.59 The steam volatile compounds among the following are:

(A)
$$NO_2$$

(B)
$$NH_2$$
 NO_2

(C)
$$H_2N$$
 OH

Choose the correct answer from the options given below:

Options 1. (A) and (B) Only

- 2. (A), (B) and (C) Only
- 3. (B) and (D) Only
- 4. (A) and (C) Only

Question Type : MCQ

Question ID: 656445590
Option 1 ID: 6564452013
Option 2 ID: 6564452012
Option 3 ID: 6564452014
Option 4 ID: 6564452015
Status: Answered

For a $Mg | Mg^{2+}(aq) | | Ag^{+}(aq) | Ag$ the correct Nernst Equation is :

Options

$$E_{\text{cell}} = E_{\text{cell}}^{\text{o}} + \frac{\text{RT}}{2\text{F}} \ln \frac{\left[\text{Ag}^{+}\right]^{2}}{\left[\text{Mg}^{2+}\right]}$$

2.
$$E_{cell} = E_{cell}^{o} - \frac{RT}{2F} \ln \frac{\left[Ag^{+}\right]}{\left[Mg^{2+}\right]}$$

3.
$$E_{cell} = E_{cell}^{o} - \frac{RT}{2F} \ln \frac{\left[Mg^{2+}\right]}{\left[Ag^{+}\right]}$$

^{4.}
$$E_{cell} = E_{cell}^{o} - \frac{RT}{2F} \ln \frac{\left[Ag^{+}\right]^{2}}{\left[Mg^{2+}\right]}$$

Question Type : MCQ

Question ID : **656445582**

Option 1 ID : **6564451980** Option 2 ID : **6564451981**

Option 3 ID : **6564451982**

Option 4 ID: 6564451983 Status: Answered

Chosen Option: 3

Q.61 An element 'E' has the ionisation enthalpy value of 374 kJ mol⁻¹. 'E' reacts with elements A, B, C and D with electron gain enthalpy values of -328, -349, -325 and -295 kJ mol⁻¹, respectively. The correct order of the products EA, EB, EC and ED in terms of ionic character is:

Options 1. EA > EB > EC > ED

- 2. ED > EC > EA > EB
- 3. ED > EC > EB > EA
- 4 EB > EA > EC > ED

Question Type : MCQ

Question ID: 656445584 Option 1 ID: 6564451988

Option 2 ID : **6564451991** Option 3 ID : **6564451989**

Option 4 ID : **6564451990**

Status : **Answered**

Q.62 If a_0 is denoted as the Bohr radius of hydrogen atom, then what is the de-Broglie wavelength (λ) of the electron present in the second orbit of hydrogen atom? [n: any integer]

Options

- $\frac{4 \text{ n}}{\pi a_0}$
- $\frac{8 \pi a_0}{n}$
- 3. $\frac{4 \pi a_0}{n}$
- $\frac{2 a_0}{n\pi}$

Question Type : MCQ

Question ID : 656445577
Option 1 ID : 6564451962
Option 2 ID : 6564451960
Option 3 ID : 6564451961
Option 4 ID : 6564451963
Status : Not Answered

Chosen Option: --

Q.63 The standard reduction potential values of some of the p-block ions are given below. Predict the one with the strongest oxidising capacity.

Options

1.
$$E_{TI^{3+}/TI}^{\ominus} = +1.26 \text{ V}$$

2.
$$E_{Al^{3+}/Al}^{\ominus} = -1.66 \text{ V}$$

3.
$$E_{Pb^{4+}/Pb^{2+}}^{\ominus} = +1.67 \text{ V}$$

4.
$$E_{Sn^{4+}/Sn^{2+}}^{\ominus} = +1.15 \text{ V}$$

Question Type: MCQ

Question ID: 656445586 Option 1 ID: 6564451996 Option 2 ID: 6564451999 Option 3 ID: 6564451997 Option 4 ID: 6564451998 Status: Answered

Q.64 Match List - I with List - II.

List - I

List - II

(Carbohydrate)

(Linkage Source)

(A) Amylose

(I) β - C_1 - C_4 , plant

(B) Cellulose

(II) α - C_1 - C_4 , animal

(C) Glycogen

- (III) α - C_1 - C_4 , α - C_1 - C_6 , plant
- (D) Amylopectin
- (IV) α -C₁-C₄, plant

Choose the correct answer from the options given below:

Options 1. (A)-(III), (B)-(II), (C)-(I), (D)-(IV)

- 2. (A)-(IV), (B)-(I), (C)-(II), (D)-(III)
- 3. (A)-(II), (B)-(III), (C)-(I), (D)-(IV)
- 4. (A)-(IV), (B)-(I), (C)-(III), (D)-(II)

Question Type : MCQ

Question ID: 656445595 Option 1 ID: 6564452032 Option 2 ID: 6564452033 Option 3 ID: 6564452035

Option 4 ID : 6564452034 Status : Answered

Q.65 Match List - I with List - II.

List - I

List - II (IUPAC Name)

(Structure)

(A) $H_3C - CH_2 - CH - CH_2 - CH - C_2H_5$

4-Methylpent-1-ene

(CH₃)₂C (C₃H₇)₂

(II)3-Ethyl-5-methylheptane

(III) 4,4-Dimethylheptane

(D)

(IV) 2-Methyl-1,3-pentadiene

Choose the correct answer from the options given below:

Question Type: MCQ

Question ID: 656445592 Option 1 ID: 6564452023 Option 2 ID: 6564452020 Option 3 ID: 6564452021 Option 4 ID: 6564452022 Status: Answered

Chosen Option: 3

1.24 g of AX₂ (molar mass 124 g mol $^{-1}$) is dissolved in 1 kg of water to form a solution with boiling point of 100.0156°C, while 25.4 g of AY₂ (molar mass 250 g mol $^{-1}$) in 2 kg of water constitutes a Q.66 solution with a boiling point of 100.0260°C.

 $K_b(H_2O) = 0.52 \text{ K kg mol}^{-1}$ Which of the following is correct?

Options 1. AX_2 and AY_2 (both) are fully ionised.

AX₂ is fully ionised while AY₂ is completely unionised.

 3 AX $_{2}$ and AY $_{2}$ (both) are completely unionised.

AX2 is completely unionised while AY2 is fully ionised.

Question Type: MCQ

Question ID: 656445579 Option 1 ID: 6564451971 Option 2 ID: 6564451970 Option 3 ID: 6564451968 Option 4 ID: 6564451969 Status: Not Answered

The reaction $A_2 + B_2 \rightarrow 2AB$ follows the mechanism

$$A_2 \stackrel{k_1}{\rightleftharpoons} A + A \text{ (fast)}$$

$$A + B_2 \xrightarrow{k_2} AB + B$$
(slow)

$$A + B \rightarrow AB$$
 (fast)

The overall order of the reaction is:

Options 1. 3

- 2. 1.5
- 3. 2.5
- 4. 2

Question Type: MCQ

Question ID: 656445583
Option 1 ID: 6564451984
Option 2 ID: 6564451987
Option 3 ID: 6564451986
Option 4 ID: 6564451985
Status: Answered

Chosen Option: 4

Q.68 The correct option with order of melting points of the pairs (Mn, Fe), (Tc, Ru) and (Re, Os) is:

Options 1 Fe < Mn, Ru < Tc and Re < Os

- 2. Mn < Fe, Tc < Ru and Os < Re
- 3. Mn < Fe, Tc < Ru and Re < Os
- 4. Fe < Mn, Ru < Tc and Os < Re

Question Type: MCQ

Question ID: 656445589
Option 1 ID: 6564452009
Option 2 ID: 6564452010
Option 3 ID: 6564452008
Option 4 ID: 6564452011
Status: Answered

Q.69 Choose the correct statements.

- (A) Weight of a substance is the amount of matter present in it.
- Mass is the force exerted by gravity on an object.
- (C) Volume is the amount of space occupied by a substance.
- Temperatures below 0°C are possible in Celsius scale, but in Kelvin scale negative temperature is not possible.
- Precision refers to the closeness of various measurements for the same quantity.

Choose the correct answer from the options given below:

- Options 1. (A), (B) and (C) Only
 - 2. (B), (C) and (D) Only
 - 3. (C), (D) and (E) Only
 - 4. (A), (D) and (E) Only

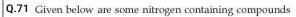
Question Type: MCQ

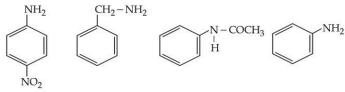
Question ID: 656445576 Option 1 ID: 6564451956 Option 2 ID: 6564451957 Option 3 ID: 6564451958 Option 4 ID: 6564451959 Status: Answered

Chosen Option: 3

500 J of energy is transferred as heat to 0.5 mol of Argon gas at 298 K and 1.00 atm. The final temperature and the change in internal energy respectively are:

Given: $R = 8.3 \text{ J K}^{-1} \text{ mol}^{-1}$


- Options 1. 348 K and 300 J
 - 2. 378 K and 500 J
 - 3. 378 K and 300 J
 - 4. 368 K and 500 J


Question Type: MCQ

Question ID: 656445578 Option 1 ID: 6564451966 Option 2 ID: 6564451964 Option 3 ID: 6564451965 Option 4 ID: 6564451967 Status: Not Answered

Chosen Option: --

Section: Chemistry Section B

Each of them is treated with HCl separately. $1.0~{\rm g}$ of the most basic compound will consume _____ mg of HCl.

(Given molar mass in g mol^{-1} C : 12, H : 1, O : 16, Cl : 35.5)

Give --

n

Ans

wer:

Question Type : SA

Question ID : **656445600** Status : **Not Answered**

Q.72 If A_2B is 30% ionised in an aqueous solution, then the value of van't Hoff factor (i) is _____ $\times 10^{-1}$.

Give --

n

Ans

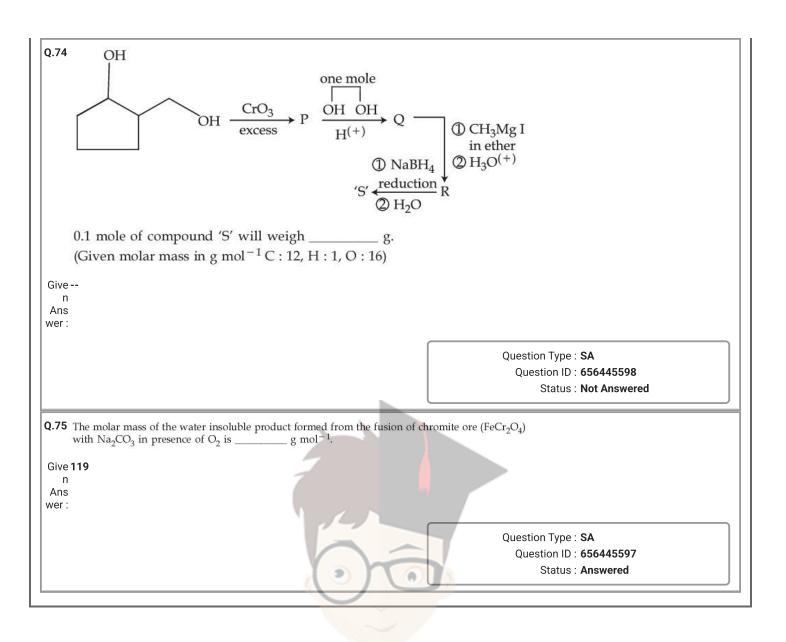
wer:

Question Type : ${\bf SA}$

Question ID : **656445596**Status : **Not Answered**

Q.73 The sum of sigma (σ) and pi (π) bonds in Hex-1,3-dien-5-yne is _____

Give 9


. n

Ans

wer:

Question Type: SA

Question ID : **656445599** Status : **Answered**

